
Analysis of Hardware Prefetching Across Virtual Page
Boundaries

Ronald G. Dreslinski, Ali G. Saidi, Trevor Mudge, and Steven K. Reinhardt
∗

{rdreslin,saidi,tnm,stever}@eecs.umich.edu
Advanced Computer Architecture Lab

Department of Electrical Engineering and Computer Science
2260 Hayward Ave

Ann Arbor, MI 48109-2121

ABSTRACT
Data cache prefetching in the L2 is at the forefront of pre-
fetching research. In this paper we analyze the impact of
virtual page boundaries on these prefetchers. Conservative
measurements on real hardware show that 30-50% of consec-
utive virtual pages are mapped to pages which are not con-
secutive in physical memory. Advanced hardware prefetch-
ing techniques that detect access patterns which span vir-
tual page boundaries often end up prefetching data that is
from the wrong physical page. Meanwhile, current simula-
tion techniques for evaluating prefetching algorithms assume
that all virtual pages are mapped consecutively. We show
that not accounting for virtual page boundaries in simula-
tion can lead to overestimates of as much as 29% (9% on
average). We also show that a simple prefetch filter can im-
prove performance up to 32% (7% on average) and recover
the overestimated performance. This leads to the conclusion
that although previous simulations may not have accounted
for virtual page boundaries, the results they demonstrate are
still attainable and that it is not necessary to simulate vir-
tual page boundaries to get accurate results. However, actual
hardware designers should take care to implement a simple
filter or else their hardware may not show the same gains in
performance as they did in simulation.

Categories and Subject Descriptors:
B.3.2 [Design Styles]: Cache memories, Virtual memory

General Terms:
Design, Performance, Measurement

Keywords:
Prefetching, Virtual Memory

∗Also with Reservoir Labs, Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’07,May 7–9, 2007, Ischia, Italy.
Copyright 2007 ACM 978-1-59593-683-7/07/0005 ...$5.00.

1. INTRODUCTION
The speed gap between processors and memory has long

been a focus of computer architects. Throughout the years
many researchers have explored ways to mitigate the long
latency of cache misses to improve performance. Due to the
excessive cost of fabricating a chip in order to evaluate a de-
sign, researchers are left to simulate their ideas. Although
simulation speeds the design process, it also creates poten-
tial for researchers to design hardware that is unrealizable
in actual gates, and worse some shortcuts used in the sim-
ulator infrastructure can produce incorrect results. Perez
showed in his MicroLib paper [12] that the design of Sim-
pleScalar [2], an often used simulation environment in the
academic community, assumes the presence of an infinite
number of MSHRs within the cache. This neglecting of the
MSHRs in simulation resulted in performance differences of
greater than 15%.

Furthermore, many simulation tools also neglect to sim-
ulate the entire system including an OS and for simplicity
just emulate the syscalls that applications make. Neglecting
these aspects can lead to results showing performance gains
that may not be realizable in a real system. In this paper
we focus on one such full system aspect, address translation,
and its effects on the results of hardware prefetching.

Recently, proposed advanced hardware prefetchers [10, 11]
have been introduced to handle data prefetching in the L2
cache. As these new frontiers are explored in memory sys-
tem architecture it is important that we have accurate sim-
ulation techniques to evaluate the actual performance gains
that these prefetchers can provide. These recent prefetching
papers use a simulator to evaluate their design that sim-
ply maps the virtual address space of the process to a flat
consecutive physical address space. The simulator does this
for simplicity; as there is no operating system and only one
application is running there is no need to support most as-
pects of a real virtual memory system. Additionally, in a
simulator it is very easy to something that isn’t done in a
real system such as giving the second level cache access to
the TLB to do address translation or sending the virtual
and physical address to the L2 cache. By doing so in a sim-
ulator an L2 could be using virtual addresses to calculate
prefetches when in a real system the L2 cache is forced to
use physical addresses. The flat memory mapping coupled
with caches not having translation capabilities leads to the
simulation environment producing incorrect results.

13

It is possible that a prefetch address outside the current
physical page can be calculated, and with the naive approach
of SimpleScalar memory mapping, it will result in these page
crossing prefetches to get the intended data. Under ideal cir-
cumstances the kernel would like to map consecutive virtual
pages to consecutive physical pages, however that option is
not always available. We measured a real system and found
that the frequency of consecutively mapped virtual pages
ranged on average from 50-70%. In addition to the pages
that are mapped non-consecutively other virtual addresses
may not be mapped at all, and prefetches to these pages
would also fail. These prefetches that correspond to incor-
rect addresses can degrade the performance of the machine
in three ways:

• They occupy space in the prefetch queue, causing evic-
tions of potentially useful prefetches.

• They consume bus bandwidth that could have been
used for successful prefetches.

• They pollute the cache with useless data.

In order to measure the performance impact of these three
effects we implemented several prefetching techniques in the
M5 [1] simulator. In our study we found that with a stride
prefetcher [4] performance can be degraded as much as 5%
(2.2% on average) when assuming that no pages are mapped
consecutively over the case where we assume that all pages
are mapped consecutively. More aggressive prefetchers such
as the Global History Buffer [10, 11] are much more sen-
sitive to the number of consecutively mapped pages where
performance can be degraded by as much as 29% (9% on
average). Filtering out prefetches that cross page bound-
aries before they are inserted into the prefetch queue can
improve performance by as much as 32% (7% on average)
compared to a system that assumes no pages are mapped
consecutively. Thus, although previous simulations neglect
virtual page boundaries, the results are still attainable in
real hardware if hardware designers add in a simple prefetch
filter.

Creating a simulation environment in a full system sim-
ulator – one that runs real operating systems codes – that
encompasses the steady state behavior of the virtual to phys-
ical page mappings is non-trivial. This is mainly due to
full-system simulators booting and then immediately run-
ning the benchmark in question. Since the system has not
been running for a while the memory map is clean and orga-
nized with large contiguous regions of free space. Simulating
the system long enough to get the memory map into steady
state would require enormous amounts of time. This work
demonstrates that it is not necessary to model the full sys-
tem to get accurate results for L2 data cache prefetchers as
long as a simple prefetch filter is used.

The following sections give some simple background in
prefetching techniques and address translation, discuss our
simulation methodology, present our results, and summarize
our conclusions.

2. PREFETCHING BACKGROUND
In order to demonstrate the effects of address translation

on prefetching techniques, several different prefetching tech-
niques were implemented and evaluated. The following sec-
tion gives some background on these prefetching techniques.

2.1 Hardware vs. Software Prefetching
There are two distinct types of prefetching, hardware and

software. With software prefetching the compiler or pro-
grammer explicitly uses an instruction to try to prefetch the
data before it is necessary. In the case of hardware prefetch-
ing the cache(s) use cache miss information to try to pre-
dict what additional blocks will be needed and then try to
prefetch them. This paper is focused entirely on hardware
prefetching because the issue surrounding address transla-
tion has a large impact in that domain. Due to a number
of recent research papers focused on second level cache (L2)
data prefetching [10, 11, 4, 8], this is the type of prefetching
we have focused on for this study.

2.2 One Block Ahead Prefetching
One block ahead prefetching is one of the earliest forms of

prefetching [7]. On a miss in the cache a prefetch is issued
for the next block. Variations of this technique have been
used such as n-block ahead prefetching, which fetches the
next n blocks after a miss. The prefetcher exists simply as
a queue of prefetch addresses that are issued when there
are no demand misses. With one block ahead prefetching
the miss rate can be reduced by up to 50% for sequential
accesses.

2.3 Tagged Prefetching
Tagged prefetching is a simple extension of the one block

ahead prefetching technique. With tagged prefetching, when
a block is placed in the cache that was the result of a prefetch
it is tagged. If a demand access hits in the cache on a block
that is tagged it signals the prefetcher that a prefetched
block was accessed and the tag on the block is cleared. By
doing this, when a prefetched block is hit in the cache it
will generate a prefetch for the next block. This technique
improves on the one block ahead prefetching scheme by al-
lowing up to a 100% reduction in miss rate after the first
miss in a sequential access pattern. This 100% reduction
does not account for partial prefetches. A partial prefetch
is when a demand miss for a prefetched block reaches the
cache while the prefetch is still in the prefetch queue or has
not returned the response from memory yet.

2.4 Stride Prefetching

Figure 1: Stride Prefetcher[11]

Stride prefetching was originally proposed by Chen and
Baer [3]. It was later expanded on by others [4, 8]. This
technique detects the access stride of load instructions and
prefetches accordingly. It also uses the tagged technique
to improve performance. It is implemented as a table of

14

entries. Each entry stores an address (PC) of the instruc-
tion it is prefetching for, the last memory address accessed,
the last stride, and a confidence indicator. See Figure 1
for a diagram. On a miss (or a tagged hit) the entries are
checked for an instruction address match. If a match occurs,
the stored value for the last memory address is compared
with the current address to calculate the current stride. A
prefetch is then issued by calculating the current address
plus that stride. The entry is then updated with the cur-
rent address and stride. The entry also adjusts its confidence
by comparing the last stride and the current stride. If the
strides were the same it increases its confidence, otherwise
it decreases it. This confidence can then be used to identify
stride buffer entries to evict. If instead the address does
not match any entry, a new entry is allocated for the access
by choosing an empty entry or one with a low confidence.
Variations of this prefetcher have been proposed that order
requests within the prefetch queue based on confidence, and
other replacement algorithms have been investigated. For
this paper we have recreated the prefetcher described above
so that it could be verified with the work done by Perez [12].

2.5 Global History Buffer Prefetching
�

Figure 2: Delta Correlating GHB Prefetcher[10]

Global history buffer prefetching was introduced by Nes-
bit and Smith [11]. The mechanisms behind GHB involve
two separate structures. The first is an index table (IT), and
the second is the global history buffer (GHB). The IT uses
a index to supply a pointer into the GHB. The GHB is a
structure that contains some information about past misses
with each node containing a link to the previous node with
the same IT entry. In other words the GHB can be viewed
as a set of linked lists, with the IT entry pointing to the
heads of the linked lists. The IT/GHB can be configured
in a number of ways to perform many different prefetching
algorithms. For example stride prefetching is implemented
by using the instruction address (PC) as the index into the
IT, and the previous miss address is stored in each GHB
entry. When indexing the IT with an instruction address, it
returns a pointer to the first entry in the GHB that matches

that address. The previous stride can be calculated by walk-
ing the linked list back one node. Nesbit [11] shows ways to
create stride prefetching, and markov prefetching [6] using
the GHB.

Nesbit [11] also presents a new form of prefetching called
global delta correlation. In this technique they use the in-
struction address (pc) as the index to the IT and the miss
address is stored in the GHB. When a prefetch is calcu-
lated, the GHB linked list is traversed backwards and the
delta pattern is calculated until it matches the current delta
pattern, at which point prefetches are issued according to
the calculated pattern. Figure 2 shows a digram of how
global delta correlation works. This is useful when access-
ing 2-D arrays when the stride will usually follow a distinct
pattern. The other new form of prefetching Nesbit [11] pro-
poses is a hybrid address correlation predictor that uses the
instruction address of the miss (PC) as the index to the IT
and again stores the misses target addresses in the GHB.
Instead of calculating strides on a miss they walk the linked
list backwards and issue prefetches for the target addresses
that missed immediately following previous accesses from
this instruction address (pc). The global address correla-
tion is presented in Figure 3. In Figure 3 a miss on address
A would generate prefetches for both B and C.

Figure 3: Address Correlating GHB Prefetcher[11]

3. EFFECTS OF PHYSICALADDRESSING
ON PREFETCHING

This section briefly introduces virtual to physical transla-
tion, and then describes how improper simulation this can
effect prefetching simulations.

3.1 Virtual to Physical Translation
In contrast to simulation systems such as SimpleScalar [2],

real hardware runs multiple processes each with their own
independent address space, but they share the same hard-
ware. In order for each process to maintain its own ad-
dress space and to provide a global address space, machines
rely on address translation. Each process is allowed its own

15

virtual address space, but it is possible that multiple pro-
cesses have identical virtual addresses but they are in dif-
ferent address spaces. In order to maintain this, a mapping
is kept of all virtual pages to their corresponding physical
page. Before a load or store is issued to the memory system
a translation step is performed to determine the physical
address associated with the processes particular virtual ad-
dress. Figure 4 shows a possible mapping of two processes,
A and B, of virtual to physical addresses. Note that both
processes have virtual addresses in the range 0x1000-0x4000,
but each is mapped to a unique physical page. If process A
were to access location 0x1100, the translation would return
a physical address of 0x1100 since A’s virtual page 0x1000
is mapped to physical page 0x1000. If on the other hand
process B were to translate the address 0x1100, it would re-
turn 0x6100 because its virtual page 0x1000 is mapped to
physical page 0x6000.

It is important to realize that as the kernel maps virtual
pages to physical pages for a particular process it will some-
times map the pages to disjoint sections. See for example
in Figure 4 how process A has virtual page 0x2000 mapped
to physical page 0x2000, but virtual page 0x3000 is mapped
to physical page 0x4000. This means that the two pages
which were at consecutive virtual locations are not in con-
secutive physical locations. This will become important in
Section 3.2.

The kernel also allows for virtual pages to reside in places
other than physical memory, i.e. swap. This means that
it is possible for some virtual pages not to have a physical
page allocated (unmapped), and therefore present another
case where a prefetch would fail to prefetch the correct data.

Process A
Virtual Pages

Physical
Pages

Process B
Virtual Pages

0x1000

0x2000

0x3000

0x4000

0x1000

0x2000

0x3000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x7000

0x8000

0x9000

Figure 4: Virtual to Physical Mapping

3.2 Physical Addresses and Prefetching
As was discussed in Section 3.1 each process on a ma-

chine has it’s own unique virtual address space. When this
address space becomes mapped sparsely in the physical ad-
dress domain, prefetching algorithms begin to break down
at the page boundaries. Consider a stride prefetcher that

calculates the next prefetch address to be the second line in
the next virtual page. If that virtual page is mapped to a
physical page disjoint from the current virtual page’s physi-
cal page, then the prefetch will be grabbing possibly useless
data. The same problem occurs if the next virtual page is
unmapped.

Virtual
Pages

Physical
Pages

(a)

(b)

Virtual
Pages

Physical
Pages

(c)

Figure 5: Prefetching Across Virtual Pages. (a)
Sequential Pages, successful prefetch. (b) Non-
Sequential Pages, failed prefetch. (c) Sequential
Pages, failed prefetch.

Figure 5 shows an example of a possible stride prefetcher
as it performs prefetches for a given process. In example
(a) the miss pattern in black generates a prefetch for the
third block, and the prefetch is successful because the pages
were mapped consecutively. In (b) the miss pattern gen-
erates a prefetch for the light gray box, but because the
virtual pages were not mapped consecutively the prefetch is
for data not being used by the program. And in example
(c) a prefetch stride is calculated from two pages mapped
non-consecutively leading to a prefetch for the wrong block
even though the current miss and the next miss are on con-
secutive pages. The problem in part (c) can be solved by
passing the virtual address to the L2 along with the physical
address and then using the virtual address to calculate the
stride and add that to the physical address (since transla-
tion is unavailable at the L2). This technique however does
not solve the case in example (b).

It is important to note that the translation mechanism
to translate from virtual to physical addresses is located
in the CPU core and is usually tightly coupled with the
load/store queue; therefore the L2 cache has no ability to
do a translation. As could be seen from the examples in
Figure 5 it is possible to issue prefetches for blocks that
aren’t relevant. Simulators such as SimpleScalar [2] assume
that all virtual pages are mapped to consecutive physical
pages and therefore neglect simulating these misses properly.

When prefetches are issued for irrelevant blocks there are
three things which occur that degrade performance.

• First if the prefetch queue is full the irrelevant prefetch
will remove a possibly useful prefetch.

• Second if the irrelevant prefetch reaches the head of the
prefetch queue and gets issued it will occupy the bus

16

for several cycles as the data is transfered. This bus
time could have been utilized by a relevant prefetch
instead.

• Third the prefetched data will be placed into the cache
causing cache pollution by evicting a potentially useful
block for one that is irrelevant.

We will show in Section 5 that in an actual system the
assumption that all virtual pages are mapped consecutively
is inappropriate. We will also do an analysis of the extremes
by assuming that all access are like example (a) in Figure 5,
or in other words assume 100% of pages are mapped to con-
secutive addresses. We also simulate a system where all
accesses are like example (b) of Figure 5, or 0% of pages are
mapped to consecutive pages.

We also implement a simple prefetch filter that removes
prefetches that span pages before they are ever entered into
the prefetch queue. This is done by simply checking the
high order bits of the miss address and the prefetch to de-
termine if they are from different pages. Results of this filter
technique are presented in Section 5.

However, this page crossing behavior does not impact cer-
tain types of prefetchers. In particular, prefetchers that only
fetch previously accessed addresses, i.e. GHB Address Cor-
relating [11]. In these types of prefetchers miss sequences
are replayed and unless the virtual page has been remapped
to a new physical page the address will still be valid.

4. METHODOLOGY
We evaluated the effects of virtual page boundaries on L2

data cache prefetching using the M5 simulator [1]. We also
used a kernel module [9] in the Linux 2.4 kernel to evalu-
ate the frequency of non-consecutive virtual page mappings.
The kernel module, simulator, and benchmarks will be dis-
cussed in the following sections.

4.1 Kernel Module
A kernel module that was proposed for embedded systems

by Movall [9] was adapted for use to calculate the frequency
of consecutive virtual pages being mapped to consecutive
physical pages. This analysis was critical in showing that in
many cases assuming the pages are mapped sequentially is
wrong. The kernel module works by walking the Linux 2.4
process list and extracting all the processes memory infor-
mation into a device mapped in /dev. Then a user can use
dd to capture the collected data. For our purposes a simple
parser was written to calculate how many adjacent virtual
pages were mapped to adjacent physical pages.

4.2 Simulation Environment
The M5 simulator was adapted to incorporate the pre-

fetchers we wished to study. In order to validate the design,
parameters were set to match those found in studies done by
Perez [12]. After running simulations the prefetchers were
found to be within 2% of the recorded values for all the
prefetchers.

In order to measure the effects of virtual page boundaries
on the prefetchers we adapted the simulator. The M5 sim-
ulator supports full system simulation, which would allow
for the testing of the prefetchers and have actual address
translation. The drawback of simulating in the full system
version of the simulator is that upon boot-up of the machine

Simulation Parameters

Processor Core
Frequency 2 GHz
Fetch, Decode, Issue BW 8 instructions per cycle
Rob Size 196 entries
LSQ Size 64 entries
SB Size 64 entries
IQ Size 128 entries
Commit width up to 8 instructions per cycle
Functional Units 8 IntALU, 3 IntMult/Div,

6 FPALU, 2 FPMult/Div,
4 Load/Store Units

L1 Data Cache
Size 32KB/direct-mapped
Block Size 32 Bytes
MSHRs 8
Targets per MSHR 4
Hit Latency 1 cycle

L1 Instruction Cache
Size 32 KB/4-way Associative/LRU
Latency 1 cycle

Unified L2 Cache
Size 1 MB/4-way associative/LRU
Block Size 64 Bytes
MSHRs 8
Targets per MSHR 4
Latency 12 cycles

L1 to L2 Bus
Frequency 2 GHz
Width 32 Bytes

L2 to Mem Bus
Frequency 400 MHz
Width 64 Bytes

Main Memory
Latency 100 cycles

Tagged Prefetcher
Queue Size 16 entries

Stride Prefetcher
PC Entries 512
Queue Size 1 entry

Table 1: Simulated System Parameters

17

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

a
m

m
p

a
p

p
lu

a
p

s
i

a
rt

b
z
ip

2

c
ra

ft
y

e
o
n

fa
c
e

re
c

fm
a

3
d

g
a

lg
e

l

g
a
p

g
z
ip

lu
c
a

s

m
c
f

m
e

s
a

m
g

ri
d

p
a

rs
e

r

p
e
rl

p
e

rl
b

m
k

s
ix

tr
a

c
k

s
w

im

tw
o

lf

v
o

rt
e

x

v
p

r

w
u

p
w

is
e

A
v
e

ra
g

e

Benchmark

P
e
rc

e
n

ta
g

e
 o

f
P

re
fe

tc
h

e
s

Is
s
u

e
d

 S
p

a
n

n
in

g
 V

ir
tu

a
l

P
a
g

e
s

Issued: 0% Sequential

Issued: 100% Sequential

Figure 6: Analysis of tagged prefetches that span pages. *Note Small Scale

0
10
20
30
40
50
60
70
80
90

100

a
m

m
p

a
p

p
lu

a
p

s
i

a
rt

b
z
ip

2

c
ra

ft
y

e
o

n

fa
c
e

re
c

fm
a

3
d

g
a

lg
e

l

g
a

p

g
z
ip

lu
c
a

s

m
c
f

m
e

s
a

m
g

ri
d

p
a

rs
e

r

p
e
rl

p
e

rl
b

m
k

s
ix

tr
a

c
k

s
w

im

tw
o

lf

v
o

rt
e

x

v
p

r

w
u

p
w

is
e

A
v
e

ra
g

e

Benchmark

P
e
rc

e
n

ta
g

e
 o

f
P

re
fe

tc
h

e
s

Is
s
u

e
d

 S
p

a
n

n
in

g
 V

ir
tu

a
l

P
a
g

e
s Issued: 0% Sequential

Issued: 100% Sequential

Figure 7: Analysis of stride prefetches that span pages.

the physical address space is mostly free and allows for most
applications to keep their virtual mappings in large contigu-
ous blocks. In order to simulate what a system in steady
state was, we would need to generate a checkpoint after the
simulated system had run for a long period of time. In the
essence of time, we adapted the non-full system simulator
to perform at both extremes. As was mentioned before the
simulator is already designed so that all virtual pages are
mapped to consecutive physical pages. We then expanded
the prefetcher to grab a block at a large distance away,
100,000 blocks ahead, when a prefetch was calculated that
crossed a page boundary. In this way we simulate the sys-
tem using prefetch queue space and bus bandwidth as well
as polluting the cache for prefetches that cross page bound-
aries. This in effect simulates a system in which no virtual
pages are mapped to consecutive physical pages. Therefore
these two points can be viewed as the extremes in terms of
what percentage of pages are mapped consecutively. It is ex-
pected that a real system would operate somewhere between
these two extremes.

The system was also adapted with a new filtered version
of a prefetcher that filters out prefetches that cross page
boundaries before they are even placed in the prefetch queue.

For all the runs the configuration parameters for the sys-
tem were derived from the work done by Perez [12] and can
be found in Table 1.

4.3 Benchmarks
The benchmarks used for our simulation were the SPEC

CPU2000 benchmark suite [5]. For each benchmark we used

a 500-million instruction trace after the early SimPoint [14].
SimPoints were previously shown to give simulation results
within 18% of the full benchmark simulation [14].

5. RESULTS

5.1 Consecutive Page Analysis

Non- Total Percentage
Consecutive Consecutive Mapped Consecutive

259 168 427 60.65
310 303 613 50.57
628 422 1050 59.81
485 358 843 57.53
466 358 824 56.55

Table 2: Measured Amount of Page Mappings at
several different times

We installed and ran the kernel module from section4.1 to
extract the information of all virtual pages that are mapped
in the system. We then parsed those results to find out,
per process, how many mapped virtual pages were consecu-
tive and mapped to consecutive physical pages. The results
are presented in Table 2. The system was booted up and
then several ray tracing applications were run. The mea-
surements were taken at various times throughout the day
to see what the current status of the machine was. These
numbers do not accurately represent what we were trying

18

0
10
20
30
40
50
60
70
80
90

100

a
m

m
p

a
p

p
lu

a
p

s
i

a
rt

b
z
ip

2

c
ra

ft
y

e
o

n

fa
c
e

re
c

fm
a

3
d

g
a

lg
e

l

g
a

p

g
z
ip

lu
c
a

s

m
c
f

m
e

s
a

m
g

ri
d

p
a

rs
e

r

p
e
rl

p
e

rl
b

m
k

s
ix

tr
a

c
k

s
w

im

tw
o

lf

v
o

rt
e

x

v
p

r

w
u

p
w

is
e

A
v
e

ra
g

e

Benchmark

P
e
rc

e
n

ta
g

e
 o

f
C

a
lc

u
la

te
d

P
re

fe
tc

h
e
s
 T

h
a
t

W
e
re

 I
s
s
u

e
d Issued: 0% Sequential

Issued: 100% Sequential
Filtered

Figure 8: Analysis of stride prefetches that get issued.

80
90

100
110
120
130
140
150
160

a
m

m
p

a
p
p
lu

a
p
s
i

a
rt

b
z
ip

2

c
ra

ft
y

e
o
n

fa
c
e
re

c

fm
a
3
d

g
a
lg

e
l

g
a
p

g
z
ip

lu
c
a
s

m
c
f

m
e
s
a

m
g
ri
d

p
a
rs

e
r

p
e
rl

p
e
rl
b
m

k

s
ix

tr
a
c
k

s
w

im

tw
o
lf

v
o
rt

e
x

v
p
r

w
u
p
w

is
e

H
a
rm

o
n
ic

 M
e
a
n

Benchmark

N
o

rm
a

il
iz

e
d

 P
e

rf
o

rm
a

n
c

e
 (

%
)

to
 N

o
 P

re
fe

tc
h

in
g

Strided - Issued: 0% Sequential
Strided - Issued: 100% Sequential
Stided - Filtered

Figure 9: Performance Improvement for Stride Prefetcher Over No Prefetching

to measure because they reflect not only data, but also in-
struction pages as well. They are also inaccurate due to
the fact that we do not measure the number of unmapped
virtual pages. Even with these conservative overestimates
on the number of pages mapped consecutively we still see
percentages ranging from only 50-61%.

5.2 Tagged Prefetcher Analysis
The tagged prefetcher was implemented and then verified

against the results presented by Perez [12]. We then ran
the tagged prefetcher to determine how often the prefetches
crossed page boundaries. The results are presented in Fig-
ure 6. Note carefully that the axis is in the range of 0-
2%. The first and second bars represent the percentage of
prefetches spanning a virtual page if no (0%) consecutive
virtual pages were mapped to consecutive physical pages,
and all (100%) consecutive virtual pages being mapped to
consecutive physical pages respectively.

These results seem reasonable because tagged prefetching
is just a variation of one block ahead prefetching. In this
case we would expect to see on average 1 miss per number
of blocks in a page. Since the simulated system we are using
is the Alpha 21264, the page size is 8kB. Our block size was
64 B, so we would expect to see about 1 page crossing every
128 blocks, which is approximately what we measured.

Due to the fact that the tagged prefetcher rarely crosses
boundaries we saw very little performance change, in terms
of IPC, assuming 0% or 100% of the pages were mapped
consecutively. Therefore we have left the graphs relating to
IPC performance out of this paper.

5.3 Stride Prefetcher Analysis
Unlike the tagged prefetcher, the stride and GHB prefetch-

ers show many more prefetches that span page boundaries.
Figure 7 shows how many of the issued prefetches of a strided
prefetcher spanned a page boundary. Note that some appli-
cations such as bzip2, galgel, and twolf see prefetches that
span page boundaries more than 70% of the time. It is also
interesting to note that depending on the benchmark we may
issue more or less prefetches that span pages when we as-
sume that no virtual pages are mapped consecutively. This
is due to the fact that by prefetching the wrong block we may
miss a tagged hit and that can alter the order of prefetches
in the prefetch queue. This change in order can alter the
miss pattern because something that would have hit before
has become evicted by the irrelevant prefetch block.

In Figure 8 we introduce a new bar, filtered, which repre-
sents the prefetcher which filters page spanning prefetches
before they are inserted into the prefetch queue. In this
graph we are analyzing the percentage of prefetches that
we calculated that actually get issued. This plays a role in
the performance of the prefetcher because the lower the per-
centage the more often we have to evict a prefetch before it
reaches the head of the prefetch queue. This can happen in
two ways. First the queue could be come full and it could get
evicted. Second, a demand miss may reach it before it was
issued. This second type is bad because had the prefetch
gotten through the queue faster the miss would never have
occurred. When the percentage of issued prefetches is low
it is expected that filtering out prefetches that are poten-

19

0
10
20
30
40
50
60
70
80
90
100

a
m
m
p

a
p
p
lu

a
p
s
i

a
rt

b
z
ip
2

c
ra
ft
y

e
o
n

fa
c
e
re
c

fm
a
3
d

g
a
lg
e
l

g
a
p

g
z
ip

lu
c
a
s

m
c
f

m
e
s
a

m
g
ri
d

p
a
rs
e
r

p
e
rl

p
e
rl
b
m
k

s
ix
tr
a
c
k

s
w
im

tw
o
lf

v
o
rt
e
x

v
p
r

w
u
p
w
is
e

A
v
e
ra
g
e

Benchmark

P
e
rc

e
n

ta
g

e
 o

f
P

re
fe

tc
h

e
s

F
il
te

re
d

 O
u

t

Figure 10: Analysis of stride prefetches that get filtered.

60

80

100

120

140

160

180

200

a
m

m
p

a
p
p
lu

a
p
s
i

a
rt

b
z
ip

2

c
ra

ft
y

e
o
n

fa
c
e
re

c

fm
a
3
d

g
a
lg

e
l

g
a
p

g
z
ip

lu
c
a
s

m
c
f

m
e
s
a

m
g
ri
d

p
a
rs

e
r

p
e
rl

p
e
rl
b
m

k

s
ix

tr
a
c
k

s
w

im

tw
o
lf

v
o
rt

e
x

v
p
r

w
u
p
w

is
e

H
a
rm

o
n
ic

 M
e
a
n

Benchmark

N
o

rm
a

il
iz

e
d

 P
e

rf
o

rm
a

n
c

e
 (

%
)

to
 N

o
 P

re
fe

tc
h

in
g

GHB - Issued: 0% Sequential
GHB - Issued: 100% Sequential
GHB - Filtered

Figure 11: Performance Improvement for GHB Delta Correlating Prefetcher Over No Prefetching

tially bad could help performance because there are plenty
of other prefetches to chose from.

Next we present the performance, in terms of IPC, of a
strided prefetcher in Figure 9. In this figure we are looking
at the relative speedup over a non-prefetching system for
each of the three cases. It is important to note that in every
case the 0% consecutive performs equal to or worse than
the 100% case. The 100% case corresponds to prefetching
results produced by SimpleScalar [2].

In cases such as art, the filtered prefetcher performs some-
where in between the other two. A real system would be
expected, based on its percentage of consecutive pages, to
operate somewhere between the 0% and 100% case. In some
cases, such as mcf and swim, the filter is able to outper-
form both metrics. This is due to the fact that by remov-
ing the prefetches that crossed page boundaries the filtered
prefetcher essentially gave priority to other prefetches that
were more useful which may have been evicted by the fil-
tered prefetch, or delayed too long to have an impact. Look-
ing back at Figure 8 it can be seen that these benchmarks
had a low number of prefetches issued, which means filter-
ing some of them improved the performance. In Figure 10
we present the percentages of prefetches that were filtered
out with the prefetch filter. The low number of prefetches
that are issued in combination with the fact that a large
percentage of prefetches 15-22% were filtered out, as seen in
Figure 10, leads to the performance gain for mcf.

Other applications like mesa, mgrid, and applu also ex-
hibited low numbers of prefetches actually being issued in
Figure 8, but they did not see the filtered version outper-
form both due to the low number of prefetches that were
actually filtered in Figure 10.

Some benchmarks saw very little performance improve-
ment at all such as eon and fma3d. This is due to the fact
that most of the prefetches calculated for these benchmarks
were issued, see Figure 8.

The ammp benchmark saw a slowdown with both forms of
prefetching but the filtered version helped by filtering a high
number of prefetches. It is clear from this that the ammp
benchmark does not actually use many of the prefetches
that cross the page boundary and by filtering them we were
able to cut down on the cache pollution and improve the
performance back to that of the non-prefetching version.

Galgel is an interesting benchmark because it exhibits be-
havior that shows that prefetches across pages really hurt
performance if they don’t succeed. They see about a 20%
degredation when none of the pages are mapped consecu-
tively. This is probably due to the fact that more than 90%
of its prefetches in Figure 7 span page boundaries. By fil-
tering those out we are able to keep the bad prefetches from
polluting the cache and negatively impacting performance.

5.4 GHB Prefetcher Analysis
The last figure presented, Figure 11, is the performance,

in terms of IPC, of a Delta Correlating GHB prefetcher. As
was the case with the stride prefetcher some benchmarks
exhibit performance gain over the 100% sequential when us-
ing the prefetch filter. However on average the filtered ver-
sion performs slightly worse than if all the pages could be
placed consecutively. In reality using a filter helps to bring
the performance of a prefetcher closer to the case where all
pages could have been mapped sequentially, and can some-
times improve performance beyond that by filtering some
prefetches that were not used.

20

6. RELATED WORK
There are many research papers related to prefetching [7,

4, 8, 6, 11, 10]. They differ from this paper in that they pro-
posed new ideas, whereas this paper is analyzing the impact
of a design decision that was left out of the analysis.

Perez’s[12] MicroLib paper did similar work in compar-
ing different prefetchers to evaluate their performance in a
neutral reproducible environment. They were careful to con-
sider one of the faults of SimpleScalar [2] in which an infi-
nite number of MSHRs is available. This bug does not exist
within M5, but the work we have done here is similar in that
it shows that designers need to be conscious of the virtual
memory translation when exploring hardware design with
simulators such as SimpleScalar where a unrealistic imple-
mentation could be neglecting something important.

Some hardware prefetchers already contain page filters
but designers often ask what, if any, performance gains the
filter is prohibiting them from exploiting. In this work we
show that although sometimes a large number of prefetchs
are filtered out, the negative impact of the non-consecutive
pages prohibits most additional gains seen from removing
the filter.

7. CONCLUSION AND FUTUREWORK
In this paper we analyzed the effects of L2 prefetches

crossing virtual page boundaries. We found that in a real
system only 50-70% of mapped virtual pages are mapped to
consecutive physical pages, however the published results of
recent prefetcher papers assume 100% of virtual pages are
mapped to consecutive physical pages. This assumption can
lead to a performance degradation which we mitigate with
a prefetch filter.

With a stride prefetcher we measured that on average 30%
of prefetches cross a page boundary. Assuming no pages are
mapped consecutively, we measured a performance degrada-
tion of about 2.2% on average. And by filtering prefetches
that cross page boundaries we see on average a 3% increase
in performance. Which results in a minimal increase in aver-
age performance over naively assuming all pages are mapped
sequentially.

The effect is more pronounced for a delta correlating global
history buffer prefetcher. Again with no pages mapped con-
secutively a degradation of 9% on average is observed and by
using a filter we were able to improve performance to within
2% of the baseline approach that assumes the OS can map
all pages sequentially.

From these results it can be seen that although prefetching
studies in the past did not account for page boundaries,
the results are still within a couple percent of what can
actually be achieved if a simple prefetch filter is introduced.
The complexity of running a full system simulation to get
accurate steady state page mappings to evaluate prefetching
techniques is complex and requires long simulation times.
However, this complexity can be avoided by simulating in
the traditional manner as long as hardware designers are
careful to put in a simple filter to prevent prefetches from
spanning pages.

Although it was not explored, another consideration is
that for some architectures the page size is variable. Unless
the prefetch filter has access to the TLB to determine the
page size, it is forced to assume the smallest page size. This
means that if it happened to calculate a prefetch on a larger

page that crossed the small page boundary, then the prefetch
filter would end up rejecting a prefetch that could have been
to useful data.

In the future this work could be expanded to make bet-
ter measurements of how many virtual page boundaries re-
ally represent a problem for data prefetching. This involves
calculating unmapped pages, as well as sorting data and
instruction pages. Other future work includes investigat-
ing larger block sizes as they start approaching the page
size. This becomes particularly relevant in the context of
3D stacked caches and memory structures[13] where very
wide buses are possible. Additional research could also look
at exposing the TLB to the L2 cache to allow for more flex-
ible prefetching or even new techniques to try to eliminate
TLB misses by walking the page table when page spanning
prefetches are detected.

8. ACKNOWLEDGMENTS
This work was supported by gifts from Intel and Sun Mi-

crosystems.

9. REFERENCES
[1] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt.

Network-oriented full-system simulation using M5. In Proc.
Sixth Workshop on Computer Architecture Evaluation using
Commercial Workloads, pages 36–43, Feb. 2003.

[2] D. Burger, T. M. Austin, and S. Bennett. Evaluating future
microprocessors: the SimpleScalar tool set. Technical Report
1308, Computer Sciences Department, University of
Wisconsin–Madison, July 1996.

[3] T.-F. Chen and J.-L. Baer. Reducing memory latency via
non-blocking and prefetching caches. In Proc. Fifth Int’l Conf.
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS V), pages 51–61, Oct. 1992.

[4] J. W. C. Fu, J. H. Patel, and B. L. Janssens. Stride directed
prefetching in scalar processors. In 25th Ann. Int’l Symp. on
Microarchitecture, pages 102–110, 1992.

[5] J. L. Henning. SPEC CPU2000: Measuring CPU performance
in the new millennium. IEEE Computer, 33(7):28–35, July
2000.

[6] D. Joseph and D. Grunwald. Prefetching using Markov
predictors. In Proc. 24th Ann. Int’l Symp. on Computer
Architecture, pages 252–263, June 1997.

[7] N. P. Jouppi. Improving direct-mapped cache performance by
the addition of a small fully-associative cache and prefetch
buffers. In Proc. 17th Ann. Int’l Symp. on Computer
Architecture, pages 364–373, 1990.

[8] S. Kim and A. V. Veidenbaum. Stride-directed prefetching for
secondary caches. In International Conference on Parallel
Processing, pages 314–323, 1997.

[9] P. Movall, W. Nelson, and S. Wetzstein. Linux physical
memory analysis. In Proc. 2005 USENIX Technical
Conference, pages 23–32, 2005.

[10] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith. Ac/dc: An
adaptive data cache prefetcher. In Proc. 13th Ann. Int’l Conf.
on Parallel Architectures and Compilation Techniques, pages
135–145, 2004.

[11] K. J. Nesbit and J. E. Smith. Data cache prefetching using a
global history buffer. In Proc. 10th Int’l Symp. on
High-Performance Computer Architecture (HPCA), page 96,
2004.

[12] D. G. Perez, G. Mouchard, and O. Temam. Microlib: A case
for the quantitative comparison of micro-architecture
mechanisms. In 37th Ann. Int’l Symp. on Microarchitecture,
pages 43–54, dec 2004.

[13] K. Puttaswamy and G. H. Loh. Implementing caches in a 3d
technology for high performnace processors. In IEEE
International Conference on Computer Design(ICCD) 2006,
pages 525–532, 2005.

[14] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behavior. In
Proc. Tenth Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
X), pages 45–57, Oct. 2002.

21

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

