
Abstract

Large numbers of logical registers can improve

performance by allowing fast access to multiple

subroutine contexts (register windows) and multiple

thread contexts (multithreading). Support for both of

these together requires a multiplicative number of

registers that quickly becomes prohibitive. We overcome

this limitation with the virtual context architecture

(VCA), a new register-file architecture that virtualizes

logical register contexts. VCA works by treating the

physical registers as a cache of a much larger memory-

mapped logical register space. Complete contexts,

whether activation records or threads, are no longer

required to reside in their entirety in the physical register

file. A VCA implementation of register windows on a

single-threaded machine reduces data cache accesses by

20%, providing the same performance as a conventional

machine while requiring one fewer cache port. Using

VCA to support multithreading enables a four-thread

machine to use half as many physical registers without a

significant performance loss. VCA naturally extends to

support both multithreading and register windows,

providing higher performance with significantly fewer

registers than a conventional machine.

1. Introduction

Twenty-five years ago architects expected VLSI

trends to enable processors with thousands of registers,

and they devised schemes such as register windows and

multithreading to take advantage of this resource [25].

Unfortunately, the realities of wire delay and power con-

sumption, along with the large number of ports needed

to support wide-issue superscalar pipelines, made these

extremely large register files impractical. Nevertheless,

those original ideas have merit. This paper shows how

architects can achieve the benefits of large logical regis-

ter files using a standard physical register file.

Registers are a central component of both instruc-

tion-set architectures (ISAs) and processor microarchi-

tectures. From the ISA’s perspective, a small register

namespace allows the encoding of multiple operands in

an instruction of reasonable size. Registers also provide

a simple, unambiguous specification of data depen-

dences, because—unlike memory locations—they are

specified directly in the instruction and cannot be

aliased. From the microarchitecture’s point of view, reg-

isters comprise a set of high-speed, high-bandwidth stor-

age locations that are integrated into the datapath more

tightly than a data cache, and are thus far more capable

of keeping up with a modern superscalar execution core.

As with many architectural features, these two pur-

poses of registers can conflict. For example, the depen-

dence specification encoded by the register assignment

is adequate for the ISA’s sequential execution semantics.

However, out-of-order execution requires that these logi-

cal registers be renamed into an alternate, larger physical

register space to eliminate false dependencies.

This paper addresses a different conflict between the

abstraction of registers and its implementation: that of

context. A logical register identifier is meaningful only

in the context of a particular procedure instance (activa-

tion record) in a particular thread of execution. From the

ISA’s perspective, the processor supports exactly one

context at any point in time. However, a processor

designer may wish for an implementation to support

multiple contexts for several reasons: to support multi-

threading, to reduce context switch overhead, or to

reduce procedure call/return overhead (e.g., using regis-

ter windows) [15, 27, 29, 5, 20, 25]. Conventional

designs require that each active context be present in its

entirety; thus each additional context adds directly to the

size of the register file. Unfortunately, larger register

files are inherently slower to access, leading to a slower† Currently at Cray Inc.

How to Fake 1000 Registers

David W. Oehmke†, Nathan L. Binkert, Trevor Mudge, Steven K. Reinhardt

Advanced Computer Architecture Lab

University of Michigan, Ann Arbor

{doehmke, binkertn, tnm, stever}@eecs.umich.edu

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05) 
0-7695-2440-0/05 $20.00 © 2005 IEEE 



cycle time or additional cycles of register access

latency, either of which reduces overall performance.

This problem is further compounded by the additional

rename registers necessary to support out-of-order exe-

cution. 

We seek to bypass this trade-off between multiple

context support and register file size by decoupling the

logical register requirements of active contexts from

the contents of the physical register file. Just as caches

and virtual memory allow a processor to give the illu-

sion of numerous multi-gigabyte address spaces with

an average access time approaching that of several

kilobytes of SRAM, we propose an architecture that

gives the illusion of numerous active contexts with an

average access time approaching that of a convention-

ally sized register file. Our design treats the physical

register file as a cache of a practically unlimited mem-

ory-backed logical register space. We call this scheme

the virtual context architecture (VCA).

In VCA, an individual instruction needs only its

source operands and its destination register to be

present in the register file to execute. Inactive register

values are automatically saved to memory as needed,

and restored to the register file on demand. The archi-

tecture modifies the rename stage of the pipeline to

trigger the movement of register values between the

physical register file and the data cache. Furthermore, a

thread can change its register context simply by chang-

ing a base pointer—either to another register window

on a call or return, or to an entirely different software

thread context. Compared to prior proposals (see

Section 5), VCA:

• unifies support for both multiple independent 

threads and register windowing within each thread;

• completely decouples the physical register file size 

from the number of logical registers by using mem-

ory as a backing store;

• enables the physical register file to hold just the 

most active subset of logical register values, instead 

of the complete register contexts, by allowing the 

hardware to spill and fill registers on demand;

• is backward compatible with existing ISAs at the 

application level for multithreaded contexts, and 

requires only minimal ISA changes for register 

windowing;

• requires no changes to the physical register file 

design and the performance-critical schedule/exe-

cute/writeback loop;

• is orthogonal to the other common techniques for 

reducing the latency of the register file—register 

banking and register caching;

• does not involve speculation or prediction, avoid-

ing the need for recovery mechanisms.

The virtual context architecture enables a near

optimal implementation of register windows, improv-

ing performance and greatly reducing traffic to the data

cache (by up to 10% and 20%, in our simulations).

VCA naturally supports simultaneous multithreading

(SMT) as well, allowing large numbers of threads to be

multiplexed on relatively small physical register files.

Our results show that a VCA SMT machine can

achieve speedups comparable to a conventional SMT

implementation with twice as many registers.

Implementing both register windows and multi-

threading in the same processor requires a multiplica-

tive number of contexts. The one such machine of

which we are aware (Sun’s Niagara [12]) has 640 reg-

isters per core—even though it is an in-order pipeline,

it does not require renaming registers. VCA provides

unified support for both techniques in an out-of-order

pipeline without the multiplicative increase in register

count normally required. We show that VCA can

achieve near-peak performance on an out-of-order

pipeline using register windows and four threads (as in

Niagara) with only 192 physical registers.

We describe VCA in more detail in Section 2.

Section 3 discusses our simulation-based evaluation

methodology. Section 4 evaluates a VCA-based imple-

mentations of register windows, SMT, and a combina-

tion of both techniques. Section 5 presents previous

work. Section 6 concludes and discusses future work.

2. The Virtual Context Architecture

This section presents the virtual context architec-

ture in two phases. First, we outline the basic changes

to a conventional out-of-order processor required to

support VCA. Second, we describe a handful of imple-

mentation optimizations that make VCA more effi-

cient.

2.1. Basic VCA implementation

The fundamental operation of VCA lies in map-

ping logical registers to physical registers. VCA builds

on the register renaming logic already found in a mod-

ern dynamically scheduled processor. A key feature of

VCA is that it has minimal impact outside of the

rename stage. Figure 1 illustrates the blocks that are

changed. We describe the basic operation of VCA by

first discussing the VCA renaming process, then detail-

ing the states and state transitions of physical registers.

We then discuss the implications for branch recovery,

and the requirements for supporting multithreading and

register windows.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05) 
0-7695-2440-0/05 $20.00 © 2005 IEEE 



2.1.1. VCA renaming.  Renaming in VCA is a two-

stage process. First, the source and destination register

indices in the machine instruction are combined with

the thread's context base pointer to generate memory

addresses. In the simplest case, each register index is

simply added to the base pointer to form a logical reg-

ister memory address.

The second stage of renaming maps the logical

register memory addresses to physical registers.

Because VCA maps registers from a large, sparse

space, the rename table must have tags like a cache or

TLB. To avoid deadlock, the rename table must be able

to concurrently map all of an instruction's source oper-

ands; thus the table must either guarantee that no two

registers from the same context can conflict or have an

associativity at least equal to the maximum number of

source register operands (typically two). Although

higher associativity provides higher performance by

reducing rename-table conflicts, we find that a four-

way set associative table provides good performance

and use this configuration in our simulations.

Section 2.2 describes further rename-table optimiza-

tions that allow a significant reduction in the number of

tag bits required for each entry.

The key difference between VCA and a conven-

tional architecture is that the rename table lookup may

miss, i.e., there may be no physical register mapping

for the desired logical register. For destination regis-

ters, a miss is not a problem, as the previous value of

the logical register is not needed. The lookup of the

destination register is only to determine which physical

register, if any, to mark as free when the current

instruction is committed. For sources, however, the

logical register must be allocated to a free physical reg-

ister and the register value must be read in from mem-

ory. We call this operation a fill.

If there are no free physical registers, a physical

register already allocated to a different logical register

must be freed. If the value in the physical register is

modified with respect to the logical register’s memory

location, the value must first be written back to mem-

ory; we call this operation a spill. (Further details of

physical register allocation are discussed in the follow-

ing section.)

In the simplest incarnation, fills and spills can be

accomplished by injecting load and store operations,

respectively, into the processor’s instruction queue.

These operations can use the same register ports, data-

paths, and cache ports as regular load and store instruc-

tions, but are simpler in some ways. Because the full

memory address is generated in rename, the execution

stage need not read a base address register or perform

an effective address calculation. The operations are not

entered into the reorder buffer and do not go through

the commit stage because they are not part of the actual

program flow.

Once physical registers have been identified for

the instruction’s source and destination values, the

instruction is dispatched to the instruction queue and

reorder buffer using these physical register indices, as

in a conventional machine. By creating appropriate

dependences between any required spills and fills and

the instruction itself, this dispatch need not wait for the

spills and fills to complete. The instruction then passes

through remainder of the pipeline (schedule, execute,

writeback, and commit) just as it would in a conven-

tional out-of-order processor.

2.1.2. VCA physical register states.  This section pro-

vides a more thorough description of VCA operation

by detailing the possible physical register states and

state transitions. Because the VCA register file serves

as both a rename register file and a cache, physical reg-

ister management combines aspects of conventional

register free-list management and cache replacement.

Conceptually, VCA associates four pieces of state

with each physical register: the corresponding logical

register memory address (if any), a reference count, a

committed bit (C), and a dirty bit (D). The reference

count tracks the number of uses of the register by

instructions in the execution portion of the pipeline, as

in previous work [18, 1]. A register’s reference count is

incremented when an instruction using the register

passes through rename, and decremented when the

instruction commits or is flushed due to an exception

or misspeculation. The committed bit, if set, indicates

that the register holds a valid, non-speculative register

value. A set dirty bit indicates that the value is more

up-to-date than the corresponding memory address,

and needs to be written back before being replaced.

Physical registers with non-zero reference counts

are considered pinned (P) and cannot be reallocated to

other logical registers. Pinning guarantees that all the

physical register indices an instruction needs to exe-

F D IQR2R1

RF
D$

ALU

LSU

I$

ASTQ

Figure 1: Pipeline diagram.

Shaded regions depict pipeline changes for VCA.

R2 represents the extra rename stage necessary.

ASTQ is the architectural state transfer queue,

described in Section 2.2.2.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05) 
0-7695-2440-0/05 $20.00 © 2005 IEEE 



cute will remain valid from the time the instruction

receives them at rename until that instruction commits.

The complete register state diagram is shown in

Figure 2. All physical registers start out in the

unpinned, uncommitted state (PC), which we refer to

as free. In this state (and this state only), a physical reg-

ister has no association with any logical register. A

physical register leaves the free state in one of two

ways. It may be allocated as a destination register for a

new instruction, in which case it is associated with the

logical register’s memory location and becomes pinned

(the reference count is incremented) but remains

uncommitted (state PC). As long as the value is

uncommitted, it should not be written back, so the

value of the dirty bit is irrelevant. When the producer

instruction commits, the physical register’s value

becomes the committed value for the corresponding

logical register. The committed and dirty bits are both

set. The instruction may remain pinned or become

unpinned (state PCD or PCD) depending on whether

other instructions in the pipeline are referencing the

register as a source operand.

A free register may also be allocated to hold an

existing logical register value that is needed as a source

operand but is not already in the physical register file.

In this case, a fill operation will bring the value in from

memory. The reference count will also be incremented,

placing the register in the PCD state. For clarity,

Figure 2 shows this transition as requiring two steps

(through state PCD), but from the implementation per-

spective it is atomic.

Committed values remain allocated to physical

registers even after they become unpinned (i.e., their

reference counts decrement to zero), so that the values

are available to future instructions without requiring a

fill. These cached unpinned values correspond to states

PCD and PCD (depending on whether the value was

generated by an instruction or brought in by a fill,

respectively). This behavior provides the physical reg-

ister file’s caching effect. These committed registers

can become free in two ways. First, the logical register

being cached can be overwritten when a later instruc-

tion with the same logical destination commits. This

transition corresponds to the freeing of a physical reg-

ister in a conventional speculative out-of-order proces-

sor. Second, the register can be reallocated to a

different logical register. This transition corresponds to

a cache replacement. When there are no free registers

available, the rename stage selects an unpinned register

for replacement using an LRU algorithm. If the

selected register is dirty, it must be spilled before it can

be reallocated. To avoid spilling physical registers that

are about to be overwritten, registers for which an

overwriting instruction has been dispatched are given

the lowest priority for replacement. From the imple-

mentation’s perspective, a reallocation takes a physical

register directly from PCD or PCD to PCD or PC

(depending on whether the register is reallocated as a

source or a destination). For clarity, Figure 2 breaks

these transitions down into multiple independent tran-

sitions passing through the free state (PC).

The rename stage may be forced to stall if there

are no free or unpinned registers. Forward progress is

guaranteed, however, because all instructions that have

passed rename are guaranteed to be able to commit

(due to register pinning). As these instructions commit,

they will decrement the register reference counts, even-

tually unpinning physical registers. (If rename stalls

indefinitely, all physical registers will be unpinned

once all renamed instructions have committed.)

2.1.3. Branch recovery.  In processors with merged

physical register files, the processor must revert its reg-

ister map to an earlier state when a misspeculated

branch is encountered. Some processors, such as the

Compaq Alpha 21264 [9], checkpoint the rename table

at each branch and restore the appropriate checkpoint

on a misprediction. Others, such as the Intel Pentium 4,

maintain a separate rename table that is updated as

instructions commit, thus tracking the machine’s com-

mitted architectural state. This scheme recovers from a

mispredicted branch at the head of the reorder buffer

commit src
--ref > 0

commit src
--ref > 0

co
m

m
it d

st
--re

f >
 0co

m
m

it
ds

t

--r
ef

==
0

alloc src
++ref

commit src
--ref == 0

alloc src
++ref

commit src
--ref == 0

alloc dst
++ref

o
v
e
rw

rite
s
p
ill

o
ve

rw
ri
te

 o
r 

d
e

a
llo

ca
te

fi
ll

PCPC

PCD PCD

PCD PCD

alloc src
++ref

alloc src
++ref

alloc src
++ref

Figure 2: Physical register state machine.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05) 
0-7695-2440-0/05 $20.00 © 2005 IEEE 



(ROB) by copying the commit-stage rename table to

the rename stage. The processor need not wait for the

mispredicted branch to reach the head of the ROB: on a

detected misprediction, the processor can iterate from

the head of the ROB up to the mispredicted branch,

updating the commit-stage table in the process, to gen-

erate the appropriate rename table state. Due to the size

and complexity of VCA’s rename table, the check-

pointing approach is likely to be infeasible. We use the

Pentium 4 approach to provide misspeculation recov-

ery in VCA.

2.1.4. Multithreading support.  A conventional pipe-

line requires that each thread have its own rename table

and sufficient physical registers to hold its complete

architectural state. VCA requires neither of these; it

requires only that each thread have a separate context

base pointer. A machine instruction’s register index

combined with the thread’s base pointer creates a glo-

bal memory address that uniquely identifies the logical

register across all contexts. The rename table takes

these global addresses as input, and thus a single table

suffices for all threads. A large number of threads

could create more conflicts in the rename table, so a

heavily multithreaded machine could require a larger

or more associative rename table for optimum perfor-

mance, but the minimum configuration for functional

correctness is unchanged.

Because VCA requires only the registers refer-

enced by in-flight instructions to be in the physical reg-

ister file, there is also no requirement to increase the

physical register size when increasing the level of mul-

tithreading (though again, performance concerns may

make a larger register file more desirable).

2.1.5. Register window support.  The logical register

context for a thread can be modified instantaneously by

updating its context base pointer value. Because the

rename map and all in-flight instructions use memory

addresses to identify logical registers, this update does

not require a pipeline flush or any other state update or

synchronization. Using the basic VCA as described

thus far to support fully windowed registers for proce-

dure calls and returns is as simple as allocating a stack

of contexts and updating the base pointer appropriately

on calls and returns. Updating the base pointer by less

than the total size of the architectural register context

provides overlapping windows for parameter passing.

Commercial ISAs that support register windows

(i.e., SPARC and IA-64) partition the logical registers

into windowed and non-windowed subsets. Registers

in the latter set do not change on procedure calls and

returns, and are used to hold global constants. Support-

ing this partitioning on VCA requires that each thread

have two base pointers, one for each class of registers.

The base pointer for windowed registers is updated on

procedure calls and returns, while the base pointer for

non-windowed registers is modified only on context

switches. The architectural register index selects the

appropriate base pointer before being summed to form

the logical register address.

2.2. VCA optimizations

The virtual context architecture as described in the

previous section is complete and functionally correct.

However, the straightforward implementation detailed

there suffers from some potential inefficiencies. This

section discusses two optimizations we apply to the

base VCA. First, we add a level of indirection to the

rename table to reduce the size of that structure. Sec-

ond, we add a new structure to the pipeline, the archi-

tectural state transfer queue (ASTQ), to handle spill

and fill operations more efficiently.

2.2.1. Rename table.  VCA requires a cache-like

rename table with tags to map arbitrary addresses to

physical registers. Adding a full address tag to each

entry in the table significantly increases its size.

Because the rename table will likely be replicated to

implement the required number of ports, this size

increase may be costly. We can take advantage of reg-

ister address locality to drastically reduce the tag size

with only a modest increase in complexity. Although

any memory address could be used as a base pointer, in

practice only a relatively small number of addresses

will be used as base pointers within a given period of

time. Register memory addresses also exhibit spatial

locality around each base pointer address.

To exploit these characteristics, we introduce an

additional translation table that maps the upper bits of

each register memory address to a much smaller regis-

ter space identifier (RSID). The concatenation of the

RSID and the remaining low-order memory address

bits (the register space offset) are then used for the

rename table lookup. Figure 3 illustrates this process.

In the example shown there, the upper 48 bits of the

64-bit register memory address are mapped to a 4-bit

RSID. As a result, the tag on each rename table entry is

only 11 bits rather than the 55 bits required without

RSIDs. In this case, the translation table could be

implemented with a small 16-entry fully associative

buffer where the RSID is simply the index of the

matching entry.

If a register memory address does not find a match

in the RSID table, it must allocate a new table entry,

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05) 
0-7695-2440-0/05 $20.00 © 2005 IEEE 



potentially replacing an existing valid table entry. In

this (rare) situation, any physical registers using the

current RSID must be flushed to memory before the

RSID can be reused. It may be desirable to associate

reference counters with each RSID so that unused

RSIDs can be identified and reused without requiring a

flush operation. RSIDs can be managed in hardware

(or low-level software, such as PAL code), and thus the

very existence of RSIDs is hidden from the operating

system and user-level code.

We can reduce the overhead of the translation pro-

cess by caching the RSID associated with each base

pointer, accessing the RSID table only when a base

pointer is updated (due to a context switch or a register-

window call or return). This optimization requires a

modest alignment restriction on the base pointer so that

a logical register offset cannot generate a memory

address outside the range of the current RSID. A simi-

lar scheme could be used to cache the physical

addresses associated with each RSID, eliminating the

need for TLB lookups (and the possibility of page

faults) on spill and fill operations.

Note that the optimal configuration of the RSID

scheme (both the number of RSIDs and the division of

the register memory address bits between the RSID

table lookup and the register space offset) will depend

on the expected usage model. The number of RSIDs

should clearly be at least as large as the number of base

pointers, and perhaps larger to enable caching of regis-

ters across context switches. For a system that does not

support register windows, the register space offset need

only be large enough to map a single logical register

file, while a register-windowed machine would per-

form best with larger register spaces that can map the

working set of an active register stack.

2.2.2. ASTQ.  The basic VCA implementation

described above inserts standard load and store opera-

tions into the pipeline to implement fills and spills,

respectively. However, fill and spill operations have

simpler requirements than program loads and stores, so

they can be supported by a streamlined hardware path.

Adding simpler, dedicated resources for fills and spills

allows them to bypass the instruction queue and

load/store queue, preserving these more precious

resources for regular program instructions.

There are three key differences between fill/spill

and load/store operations. First, fills and spills do not

require effective address calculation; fill addresses are

calculated in rename, and spill addresses are obtained

via table lookup. Second, fills and spills do not require

memory disambiguation with respect to program loads

and stores. VCA does not provide coherence between

the register file and backing memory, so the system

provides no guarantees on the results of regular pro-

gram accesses to the memory-mapped register space.

Third, fills and spills do not have data dependences on

regular instructions. A regular instruction may have a

dependence on a fill, but fill/spill addresses do not

come from registers (as mentioned) and spills are never

generated unless the target physical register has no out-

standing references. Spills are always ready to execute

as soon as they are generated in rename, and the only

dependence a fill may have is on a prior spill that is

freeing its physical register target.

As a result, spill and fill operations can be sched-

uled independently from all other program instructions

using a simple FIFO buffer. We call this buffer the

architectural state transfer queue (ASTQ). The location

of the ASTQ in the pipeline is illustrated in Figure 1.

ASTQ operations share issue ports with memory oper-

ations so that additional register file and cache ports

are not required. If there are fewer ready load or store

operations than memory issue ports, the entry at the

head of the ASTQ (if any) is issued to a free port. We

found that only four entries are required in the ASTQ

to provide maximum benefit.

3. Methodology

We used simulation to compare VCA to a conven-

tional architecture. We begin with common features,

then discuss details related specifically to register win-

dows and SMT, respectively.

We simulated VCA using M5, a detailed execu-

tion-driven architecture simulator [3]. We used an

aggressive but realistic four-issue superscalar proces-

sor as our baseline. Table 1 lists the simulated baseline

system parameters. We chose a short pipeline depth (8

cycles) to exaggerate the impact of the added rename

cycle we assume for VCA (see Figure 1). We also

chose a conservative 3-cycle data cache hit latency to

reflect realistic spill and fill overheads.

31348

Tag PR Tag PR

6
4
 E

n
trie

s

11b 8b 11b 8b

48

17

= =

T
ra

n
s
la

ti
o
n
 T

a
b
le

Register Address
(Base Address + Logical Index)

6

11

RS offset

RSID

13

4

Figure 3: Optimized rename table.

(See Section 2.2.1.)

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05) 
0-7695-2440-0/05 $20.00 © 2005 IEEE 



The size of the VCA rename table varies based on

the number of threads supported. The table is set-asso-

ciative with 64 entries per way, with associativity of 3,

5, or 6 (192, 320, or 384 entries) for one, two, and four

threads, respectively. The VCA rename table has only

8 ports (compared with 12 on the baseline) to further

reduce its complexity. Reads of the same register are

combined and use a single port. At most two spill or fill

operations each cycle can be written into the ASTQ,

which has four entries. If the rename table or ASTQ

ports are exhausted, one or more instructions will be

delayed in rename until the following cycle.

We evaluated the designs using the SPEC

CPU2000 benchmarks [10] (except for the four Fortran

90 benchmarks, which the GNU compiler suite could

not compile). The benchmarks were compiled with gcc

3.3.3 at -O3 optimization, which includes function

inlining. We generated the best single SimPoint [24]

for each binary running the reference input. In the case

of benchmarks with more than one input, the input

closest to the average IPC of all the inputs was

selected. Each program was simulated for 100 million

instructions after a 5 million instruction warm-up

period.

3.1. Register windows

Comparing executions both with and without reg-

ister windows requires extra effort. Windowed regis-

ters visibly change the ISA semantics, requiring

recompilation to eliminate the stores and loads used to

explicitly spill and fill registers on a non-windowed

machine. Furthermore, the elimination of these loads

and stores changes the program path length, meaning

that IPC is no longer a valid metric for comparison.

Because our simulation environment supports only

the Alpha ISA [26], we defined a variant of Alpha that

includes windowed registers. To maintain compatibil-

ity with pre-existing binaries, we define any register

used to communicate values across a function call (in

either direction) is treated as non-windowed (does not

change). All other registers are treated as windowed

(changes on function calls and returns). We overload

the call and return instructions to allocate and deallo-

cate register windows respectively. We modified the

GNU compiler suite (gcc 3.3.3) [8] to support the new

architecture and ABI. The GNU standard C library

(glibc 2.3.2) was also recompiled using the new ABI

for linking with the windowed binaries.

To deal with the differing instruction path length

between the windowed and non-windowed binaries,

we measured the number of instructions required to

execute both versions of each benchmark to comple-

tion using fast functional simulation. We estimate exe-

cution time as the product of the CPI from the detailed

SimPoint simulation and the complete benchmark’s

dynamic instruction count. Total cache accesses are

calculated similarly, by multiplying the rate at which

the cache is accessed (per committed instruction) by

the total dynamic instruction count. The ratio between

the path lengths is shown in Table 2. Because register

windows only affect performance when there is a rea-

sonably high frequency of function calls, we use only

those benchmarks that make a function call at least

once every 500 instructions.

We simulated the windowed binaries from execu-

tion points corresponding to the SimPoints in the base-

line binaries. We identified these by counting dynamic

conditional control instructions, which remained con-

stant (within 0.001%) between the windowed and non-

windowed binaries.

3.2. Simultaneous multithreading

We used a scheme similar to that of Raasch [22] to

generate representative multi-thread workloads. We

simulated all the 253 possible two-thread workloads

using the baseline architecture. We then generated a

vector of 14 statistics (IPC, cache miss rate, etc.) for

each workload and ran a linkage-based clustering algo-

rithm to identify workloads with similar characteristics

Table 1: Baseline processor parameters.

Machine Width 4

Instruction Queue 128

Reorder Buffer 192

Pipeline depth (fetch to exec) 8 cycles

DL1 Cache Ports 2 R/W

DL1 Cache Size 64K 4-Way 3 cycle hit

IL1 Cache Size 64K 4-Way 1 cycle hit

L2 Cache Size 1M 4-Way 15 cycle hit

Memory Latency 250 cycles

Branch Predictor Hybrid

Table 2: Path length ratio

(register window to baseline).

Benchmark Ratio Benchmark Ratio

bzip2_graphic 0.92 twolf 0.99

crafty 0.93 vortex_2 0.82

eon_rushmeier 0.94 vpr_route 0.90

gap 0.91 ammp (FP) 0.98

gcc_expr 0.92 equake (FP) 0.94

gzip_graphic 0.92 mesa (FP) 0.92

parser 0.92 wupwise (FP) 0.93

perlbmk_535 0.85 Average 0.92

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05) 
0-7695-2440-0/05 $20.00 © 2005 IEEE 



(after reducing the dimensionality using principle com-

ponents analysis). We identified 43 workload clusters,

and selected the workload nearest the centroid of each

cluster for our experiments. We repeated this process

on all pairs of two-thread workloads to generate a set

of 127 four-thread workloads.

Each workload is warmed up until one thread

reached 5 million instructions, then run until one thread

commits 100 million instructions. Two statistics are

used to measure performance. The first is weighted

execution time. This metric is calculated by summing

the relative execution time of all threads—the execu-

tion time of each thread in the SMT workload, divided

by the execution time of the same benchmark running

as a single thread. The execution time was calculated

by multiplying the cycles per instruction (CPI) by the

dynamic path length of the benchmark. The second sta-

tistic is weighted cache accesses. It is calculated simi-

lar to weighted speedup, but using data cache accesses

per instruction instead of execution time.

4. Results

We present three sets of results. First, we examine

the performance of register windows and SMT individ-

ually, each implemented using VCA. We then look at

the behavior of combining both SMT and register win-

dows on VCA.

4.1. Register windows

This section compares register windows imple-

mented using the virtual context architecture to three

other architectures. We perform this comparison across

various physical register file sizes. We start with 64

physical registers, equal to the number of architectural

registers—32 integer and 32 FP. We go up to 256 regis-

ters, equal to the number of architectural registers plus

the size of the reorder buffer. Performance does not

improve beyond this point as the reorder buffer fills

before any additional physical registers can be used.

In addition to our non-windowed baseline, we

model a conventional register window implementation

in which the number of logical registers is expanded to

hold multiple contiguous register windows—specifi-

cally, the maximum number of windows that can be fit

in the physical register file while leaving at least 64

rename registers available. When a register window

overflow or underflow occurs, the pipeline delays for

10 cycles to model the time needed for trapping to the

operating system’s overflow/underflow handler. After

the delay, load or store instructions are inserted into the

pipeline to either fill a new window on an underflow,

or to save all the dirty registers in the departing win-

dow on an overflow.

We also include results for an idealized register-

window implementation. This model provides an lower

Figure 4: Register window execution time.

Normalized to baseline with 256 phys. regs.

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

64 128 192 256

Physical Registers

N
o

rm
a

li
z
e
d

 E
x
e
c

u
ti

o
n

 T
im

e baseline

ideal

register window

vca

No Baseline

Figure 5: Register window cache accesses.

Normalized to baseline with 256 phys. regs.

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

64 128 192 256

Physical Registers

N
o

rm
a

li
z
e

d
 D

a
ta

 C
a

c
h

e
 A

c
c

e
s

s
e
s

baseline

ideal

register window

vca

1.98

No Baseline

Figure 6: Single cache port execution time.

Normalized to dual-port baseline

with 256 phys. regs.

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

64 128 192 256

Physical Registers

N
o

rm
a

li
z
e
d

 E
x
e

c
u

ti
o

n
 T

im
e

baseline

ideal

register window

vca

No Baseline

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05) 
0-7695-2440-0/05 $20.00 © 2005 IEEE 



bound on execution time by handling spills and fills

instantaneously and without accessing the data cache.

Figure 4 presents execution times, normalized to

the baseline architecture with 256 physical registers.

Note that the baseline architecture cannot run with only

64 physical registers; there are 64 architectural regis-

ters, so this size does not provide any rename registers

needed for out-of-order execution.

VCA performs very close to the ideal architec-

ture—within 1% with 256 physical registers. With

fewer physical registers, VCA is forced to generate

many more spills and fills, increasing the gap between

it and ideal.

VCA with register windows provides a perfor-

mance improvement over the baseline non-windowed

architecture at all register file sizes. VCA’s perfor-

mance advantage increases as the number of physical

registers decreases, from 4% at 256 registers to 9% at

128 registers. In the conventional architecture, fewer

physical registers means fewer rename registers, which

reduces the effective instruction scheduling window

size. In contrast, VCA can move infrequently used

architectural state out to memory to free more physical

registers for renaming.

By eliminating the loads and stores needed to fill

and spill registers, register windows not only reduce

the number of instructions executed but also the num-

ber of data cache accesses. Figure 5 presents the num-

ber of data cache accesses generated by the four

architectures over the same range of physical register

file sizes. The results are again normalized to the base-

line binary with 256 physical registers.

Note that some architectures experience more data

cache accesses as the number of physical registers is

decreased, while others experience the opposite effect.

In all cases, having fewer physical registers throttles

misspeculation, resulting in a slight decrease in cache

accesses. For the baseline and ideal register window

architectures, only explicit loads and stores in the

binary generate non-speculative data cache accesses,

so the misspeculation effect is the only source of varia-

tion.

For VCA and the conventional register window

architecture, smaller physical register files cause sig-

nificant increases in window fills and spills, dwarfing

the impact of reduced misspeculation. Note that this

traffic increases at a much slower rate with VCA than

with the conventional window architecture. The con-

ventional register-window scheme saves and restores

entire windows on each overflow or underflow—

including dead and unused registers—while VCA

spills and fills values to memory at the granularity of

individual registers. Even when the conventional regis-

ter window architecture provides nearly the same data

cache access savings as VCA, the performance of VCA

is much better. The incremental single-register spills

and fills generated by VCA have much less effect on

pipeline performance than the bursty sequences of

loads and stores generated by the conventional imple-

mentation. VCA also avoids the underflow/overflow

trap overhead seen in conventional register window

implementations.

We can take advantage of VCA’s reduced cache

traffic by reducing the number of data-cache ports, sav-

ing cache area, latency, and power. Figure 6 shows the

execution time of our four architectures modified to

have only a single data-cache port, normalized to the

two-port baseline architecture. The results are qualita-

tively similar to Figure 4. However, VCA’s lower

cache traffic provides an even larger performance

advantage on this pipeline, especially at 256 physical

registers. The VCA configuration is almost 7% faster

than the baseline in the single-port pipeline versus only

4% faster in the dual-port pipeline. Furthermore, at 256

registers, the single-port VCA provides effectively the

same performance as the dual-port baseline (0.5%

slowdown). Comparing the VCA data points in

Figure 6 with the baseline data points in Figure 4, we

see that with 128 registers, VCA with one cache port is

nearly 2.5% faster than the dual-port baseline.

4.2. Simultaneous multithreading

This section examines the effectiveness of VCA in

supporting multiple thread contexts for SMT (without

register windows). Figure 7 presents weighted speed-

ups for two- and four-thread workloads on both VCA

and a conventional SMT architecture. The speedups

are relative to single-threaded execution on the base-

line architecture with 256 physical registers.

For these runs, the number of physical registers is

varied from 64 to 448. For the two-thread runs, there is

no performance benefit past 320 physical registers,

since this size is large enough to hold two copies of the

architectural state (128 regs) plus one rename register

for each ROB entry (192 regs). In addition, the conven-

tional architecture cannot operate unless the number of

physical registers is strictly greater than the number of

architectural registers needed (128 for two threads or

256 for four threads).

The virtual context architecture is able to maintain

its performance with a much smaller physical register

file size. With two threads and 192 physical registers,

VCA is able to achieve 97% of the performance of the

baseline with a full set of 320 physical registers, while

the baseline only achieves 88% of this level. The four

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05) 
0-7695-2440-0/05 $20.00 © 2005 IEEE 



thread results are even more persuasive. With 192

physical registers, VCA is able to achieve a 98.7% of

the performance of the baseline with a full set of 448

physical registers. VCA achieves this speedup with

fewer physical registers than logical registers, a point

where the conventional architecture is unable to oper-

ate. The baseline requires double the number of physi-

cal registers to achieve a comparable speedup.

4.3. SMT with register windows

In a conventional architecture, register windows

and SMT each require a significant increase in the size

of the physical register file. Worse yet, combining the

two techniques has a multiplicative impact. This sec-

tion shows that VCA can easily accommodate both

SMT and register windows at the same time with a

conventionally sized physical register file.

Figure 8 presents weighted speedups for VCA and

the baseline architecture with one, two, and four

threads. As before, speedups are relative to the single-

thread baseline with 256 physical registers. As in the

previous section, the ROB size places an upper bound

on the effective register file size for one and two

threads, while the conventional architecture cannot

operate without more physical than logical registers.

By combining the efficiencies of register windows

and SMT, while enabling SMT on smaller register

files, the virtual context architecture provides a higher

speedup at every size of physical register than the base-

line architecture. In fact, VCA achieves 98% of its

peak performance using four threads on only 192 regis-

ters. At this same register file size, the conventional

architecture can support only two threads, resulting in

22% lower speedup.

The ability of the virtual context architecture to

support more threads on a smaller register file comes at

the cost of additional data cache accesses. A key bene-

fit from combining register windows and SMT is that

the reduction in cache accesses from register windows

counters the increase due to SMT. For example,

although the four-thread non-windowed VCA with 192

physical registers provides 98% of the performance of

the 448-register baseline, it requires 24% more cache

accesses. Adding register windows to the same VCA

configuration reduces its cache accesses by 23%,

resulting in 5% fewer cache accesses than the non-win-

dowed baseline.

5. Related work

The idea of using memory to provide a backing

store to the register file has been explored before. Dit-

zel et al. [7] describe the C machine stack cache, where

the register file is replaced by a large circular buffer

that is mapped contiguously onto the stack. Huguet and

Lang [11] use a table of memory addresses and com-

piler support to allow the hardware to perform back-

ground saves/restores. Nuth et al. [19] proposed the

Named State Register File, which like VCA treats the

physical register file as a cache of memory-mapped

logical registers. Unlike our design, the Named State

Register File requires a content-associative lookup on

the entire register file on every access, which would

likely impact the processor’s cycle time.

Register caches [2, 21, 30] and banking [2, 6] have

been proposed to improve the access latency of large

register files. In these designs, the full architectural

state is still kept in the register file, so context switches

and register window over- and underflows still require

explicit copying of many (often unused) registers to

Figure 7: SMT performance.

Weighted speedup vs. single-thread baseline

with 256 phys. regs.

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

64 128 192 256 320 384 448

Physical Registers

S
p

e
e

d
u

p

vca 2T

vca 4T

baseline 2T

baseline 4T

No Baseline Max 1T Max 2T Max 4T

Figure 8: SMT + register window performance.

Weighted speedup vs. single-thread baseline

with 256 phys. regs.

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

64 128 192 256 320 384 448

Physical Registers

S
p

e
e
d

u
p

vca 1T
vca 2T
vca 4T
baseline 1T
baseline 2T
baseline 4T

No Baseline Max 1T Max 2T Max 4T

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05) 
0-7695-2440-0/05 $20.00 © 2005 IEEE 



and from memory, and die area requirements continue

to scale with the product of the number of thread con-

texts and the number of windows per context. Monreal

et al. [17] improve physical register utilization by

delaying the allocation of physical registers until write-

back. The physical register file implementation is

orthogonal to VCA, so these techniques may still be

useful underneath the VCA scheme.

One of the major costs of SMT is the larger physi-

cal register file needed to accommodate additional

architectural state. Earlier proposals sought to reduce

this burden by dividing the logical registers among

multiple threads [28, 23]. These designs require exten-

sive compiler and operating system support.

Martin et al. [16] and Lo et al. [14] propose soft-

ware identification of dead register values to reduce

save/restore traffic and to free physical registers for

other SMT threads, respectively. VCA achieves similar

goals in part by moving dead values out of the register

file into memory. VCA does not require software anno-

tations, and also handles values that are not dead but

have not been accessed recently. Dead-value annota-

tions would be a useful addition to VCA, allowing it to

avoid spilling dead values to memory and to reclaim

dead registers preferentially over live but inactive ones.

We hope to explore this extension in future work.

Two commercial architectures that use register

windows are SPARC [29] and Itanium [5]. Overflow

and underflow conditions are handled by trapping to

the operating system on SPARC processors, while Ita-

nium designs use a hardware engine. In either case, the

handling of an underflow or overflow halts the execu-

tion of the program to copy entire windows, adding a

significant amount of overhead.

Previous work has also proposed directing stack

accesses to a separate pipeline and cache [4, 13]. These

designs reduce data cache bandwidth demand, but only

by diverting this demand to a separate cache.

6. Conclusions and future work

The virtual context architecture (VCA) uses a

novel mapping scheme to effectively decouple the

number of supported logical registers from physical

register storage requirements. VCA enables the physi-

cal register file to hold just the most active subset of

logical register values by spilling and filling individual

registers on demand in hardware. The removal of the

logical register storage requirement allows architects to

support register-hungry schemes such as register win-

dows and simultaneous multithreading, while choosing

the physical register file size based on performance

considerations alone.

A VCA-based implementation of register win-

dows in an out-of-order processor reduces execution

time by 4% while reducing data cache accesses by

nearly 20% compared to a non-windowed machine,

with an even larger performance advantage over a con-

ventional register-window implementation. VCA’s data

cache traffic reduction is large enough that it can

achieve the same performance with one cache port as

an otherwise similar conventional machine would with

two cache ports.

VCA is also able to manage thread contexts effi-

ciently, enabling effective implementation of simulta-

neous multithreading (SMT) using as few as half the

registers of a standard architecture. Furthermore, VCA

handles thread and function contexts at the same time

in a unified way, allowing SMT to be combined with

register windows with no additional physical registers.

As a result, a four-thread VCA machine with 192 regis-

ters can achieve higher performance than a conven-

tional non-windowed SMT machine with twice as

many registers. In comparison, Sun’s Niagara [12] uses

640 registers per core to support 4 threads and register

windows on an in-order machine (i.e., no renaming

registers required).

While this paper only examined relatively low lev-

els of multithreading, VCA requires negligible per-

thread state (a PC and a register base pointer), so it can

in principle support dozens of threads. This opportu-

nity opens the door to efficient support for microkernel

operating systems, virtual machines, and very fast

interrupt and exception processing.

VCA could also benefit from novel compiler reg-

ister allocation algorithms that seek to minimize the

“footprint” of a thread in the logical register space. For

example, compilers could re-use recently dead logical

registers in preference to other logical register identifi-

ers. VCA can exploit this locality by leaving unused

logical register values in memory.

Furthermore, VCA lends itself to other applica-

tions beyond register windows and threads, such as

emulation of stack-based architectures or ISAs with

large logical register files. The separation of register

state from the standard call stack in a VCA implemen-

tation of register windows also makes it more secure,

as it is immune to stack-smashing attacks.

Acknowledgments

This material is based upon work supported by the

National Science Foundation under Grant Nos. CCR-

0219640 and CCF-0325898. This work was also sup-

ported by gifts from Intel, an Intel Fellowship, and a

Sloan Research Fellowship.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05) 
0-7695-2440-0/05 $20.00 © 2005 IEEE 



References

[1] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint 

processing and recovery: Towards scalable large instruc-

tion window processors. In 36th Ann. Int’l Symp. on Mi-

croarchitecture, pages 423–434, Dec. 2003.

[2] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. 

Reducing the complexity of the register file in dynamic 

superscalar processors. In 34th Ann. Int’l Symp. on Mi-

croarchitecture, pages 237–248, Dec. 2001.

[3] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt. Net-

work-oriented full-system simulation using M5. In Proc. 

Sixth Workshop on Computer Architecture Evaluation 

using Commercial Workloads, Feb. 2003.

[4] S. Cho, P.-C. Yew, and G. Lee. Decoupling local variable 

accesses in a wide-issue superscalar processor. In Proc. 

26th Ann. Int’l Symp. on Computer Architecture, pages 

100–110, May 1999.

[5] Intel Corporation. Intel IA-64 Architecture Software De-

veloper’s Manual. Santa Clara, CA, 2000.

[6] J.-L. Cruz, A. González, M. Valero, and N. P. Topham. 

Multiple-banked register file architectures. In Proc. 27th 

Ann. Int’l Symp. on Computer Architecture, pages 316–

325, June 2000.

[7] D. R. Ditzel and H. R. McLellan. Register allocation for 

free: The C machine stack cache. In Proc. Symp. on Ar-

chitectural Support for Programming Languages and 

Operating Systems, pages 48–56, Mar. 1982.

[8] Free Software Foundation. GNU Compiler Collection. 

http://gcc.gnu.org.

[9] L. Gwennap. Digital 21264 sets new standard. Micropro-

cessor Report, 10(14):11–16, Oct. 28, 1996.

[10]J. L. Henning. SPEC CPU2000: Measuring CPU perfor-

mance in the new millennium. IEEE Computer,

33(7):28–35, July 2000.

[11]M. Huguet and T. Lang. Architectural support for re-

duced register saving/restoring in single-window register 

files. ACM Trans. Computer Systems, 9(1):66–97, Feb. 

1991.

[12]P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 

32-way multithreaded sparc processor. IEEE Micro,

25(2):21–29, March/April 2005.

[13]H.-H. S. Lee, M. Smelyanskiy, G. S. Tyson, and C. J. 

Newburn. Stack value file: Custom microarchitecture for 

the stack. In Proc. 7th Int’l Symp. on High-Performance 

Computer Architecture (HPCA), pages 5–14, Jan. 2001.

[14]J. L. Lo, S. S. Parekh, S. J. Eggers, H. M. Levy, and 

D. M. Tullsen. Software-directed register deallocation for 

simultaneous multithreaded processors. IEEE Trans. 

Parallel and Distributed Systems, 10(9):922–933, Sept. 

1999.

[15]D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Kou-

faty, J. A. Miller, and M. Upton. Hyper-threading tech-

nology architecture and microarchitecture. Intel

Technology Journal, 6(1), Feb. 2002.

[16]M. M. Martin, A. Roth, and C. N. Fischer. Exploiting 

dead value information. In 30th Ann. Int’l Symp. on Mi-

croarchitecture, pages 125–135, Dec. 1997.

[17]T. Monreal, A. Gonzlez, M. Valero, J. Gonzlez, and 

V. Vinals. Delaying physical register allocation through 

virtual-physical registers. In 32nd Ann. Int’l Symp. on Mi-

croarchitecture, pages 186–192, Nov. 1999.

[18]M. Moudgill, K. Pingali, and S. Vassiliadis. Register re-

naming and dynamic speculation: an alternative ap-

proach. In Proceedings of MICRO-26, 1993.

[19]P. R. Nuth and W. J. Dally. The named-state register file: 

Implementation and performance. In Proc. 1st Int’l Symp. 

on High-Performance Computer Architecture (HPCA),

pages 4–13, Jan. 1995.

[20]D. A. Patterson and C. H. Sequin. RISC I: A reduced in-

struction set VLSI computer. In Proc. 8th Intl. Symp. 

Computer Architecture, volume 32, pages 443–457, Nov. 

1981.

[21]M. Postiff, D. Greene, S. Raasch, and T. N. Mudge. Inte-

grating superscalar processor components to implement 

register caching. In Proc. 2001 Int’l Conf. on Supercom-

puting, pages 348–357, 2001.

[22]S. E. Raasch and S. K. Reinhardt. The impact of resource 

partitioning on smt processors. In Proc. 12th Ann. Int’l 

Conf. on Parallel Architectures and Compilation Tech-

niques, September 2003.

[23]J. A. Redstone, S. J. Eggers, and H. M. Levy. Mini-

threads: Increasing tlp on small-scale smt processors. In 

Proc. 9th Int’l Symp. on High-Performance Computer 

Architecture (HPCA), pages 19–30, Feb. 2003.

[24]T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. 

Automatically characterizing large scale program behav-

ior. In Proc. Tenth Int’l Conf. on Architectural Support 

for Programming Languages and Operating Systems 

(ASPLOS X), pages 45–57, Oct. 2002.

[25]R. L. Sites. How to use 1000 registers. In Caltech Confer-

ence on VLSI, pages 527–532. Caltech Computer Science 

Dept., 1979.

[26]R. L. Sites, editor. Alpha Architecture Reference Manual.

Digital Press, 3 edition, 1998.

[27]D. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, 

and R. L. Stamm. Exploiting choice: Instruction fetch and 

issue on an implementable simultaneous multithreading 

processor. In Proc. 23rd Ann. Int’l Symp. on Computer 

Architecture, pages 191–202, May 1996.

[28]C. A. Waldspurger and W. E. Weihl. Register relocation: 

Flexible contexts for multithreading. In Proc. 20th Ann. 

Int’l Symp. on Computer Architecture, pages 120–130, 

May 1993.

[29]D. L. Weaver and T. Germond, editors. SPARC Architec-

ture Manual (Version 9). PTR Prentice Hall, 1994.

[30]R. Yung and N. C. Wilhelm. Caching processor general 

registers. In Proc. 1995 Int’l Conf. on Computer Design,

pages 307–312, Oct. 1995.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05) 
0-7695-2440-0/05 $20.00 © 2005 IEEE 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


