
A Dual-Processor Solution for the MAC Layer of a Software
Defined Radio Terminal

Hyunseok Lee, Trevor Mudge
Advanced Computer Architecture Laboratory

Department of Electrical Engineering and Computer Science
University of Michigan

{leehzz,tnm}@umich.edu

ABSTRACT
Considerable work has been devoted to studying flexible
computation structures for the physical layer of a software
defined radio (SDR) terminal. However there has been al-
most no research on protocol processors for the upper layer
protocols such as the media access control (MAC) and link
protocol. A general purpose processor (GPP) is sufficient
for the protocol processing of a single mode terminal. How-
ever, in the case of a multi-mode system required for SDR,
there is a very wide set of possibilities for the MAC layer.
In principle these too could be handled by a GPP. However,
we show that a better solution is to use a GPP augmented
by a small supplemental processor. The GPP is responsi-
ble for the relatively complex protocol operations in the ac-
tive mode, and the supplemental processor handles the idle
mode operations. This separation of responsibilities simpli-
fies the implementation of hard real-time responses required
by some protocols (for example IEEE 802.11), while main-
taining the programmability needed to handle a wide range
of protocols. In addition, this organization allows a signif-
icant power savings in the idle mode. This is important
because the protocol processor must process a large num-
ber of tiny idle mode tasks whose aggregate effect over time
dominates the power consumption in a wireless terminal.

As part of our study we develop a hardware model of the
supplemental processor in Verilog and its software model in
C. Using commercial CAD tools we synthesized out design
and evaluated the power consumption and response time of
the platform. Our results show that the proposed platform
meets the real-time deadlines at low power while maintain-
ing programmability.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures–
Mobile processors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’05, September 24–27, 2005, San Francisco, California, USA.
Copyright 2005 ACM 1-59593-149-X/05/0009 ...$5.00.

General Terms
Design, Performance

Keywords
Wireless platform, SDR terminal, Protocol processing

1. INTRODUCTION
Software defined radio (SDR) is a wireless communication

system whose function blocks are implemented by software
routines so that various wireless protocols can easily be sup-
ported by simple software changes. The concept of SDR
originated in the military, but now it is emerging as im-
portant commercial technology. For instance, 4G, the next
generation of wireless communication systems requires that
multiple wireless protocols be supported [15]. Although the
concept of SDR is very attractive, there are many obstacles
on the way to its commercialization; the particularly power
consumption.

There has been a lot of research effort on the physical layer
but there has been almost no research on protocol proces-
sors executing upper layer protocols. In the past this was
implemented on a flexible general purpose processor (GPP)
for single mode terminals. In this paper, we analyze the im-
pact of multiple wireless protocols on the architecture of the
protocol processor and propose a dual-processor hardware
solution.

To derive the requirements of the protocol processor we
analyzed a collection of differnt wireless communication stan-
dards including Bluetooth, IEEE 802.11a/b/g, GSM, IS-95,
IS-2000, and W-CDMA. One important requirement is the
need for a tight response time of 10 us in the case of the IEEE
802.11 protocol. Fast response time is needed because the
whole channel is occupied by a terminal when it is generating
a response message. Thus, the protocol processor must re-
spond quickly in order to maximize channel throughput. In
addition, as explained in Section 3.2, wireless terminals per-
form many operations even during idle periods. A common
characteristic of these idle period operations is a light work-
load - a simple field matching in most cases. Although the
power consumption of each idle operation is very small, the
aggregated idle power becomes dominant because a wireless
terminal is idle most of the time.

As shown in Figure 1, we propose a heterogeneous dual-
processor architecture consisting of a conventional main pro-
cessor and a simple supplemental processor. The main pro-

257

Main Processor

Supplemental
Processor

Baseband
Modem

Upper Layers
Physical Layer

Figure 1: Proposed hardware platform for upper

layer protocol processing in an SDR terminal

cessor provides the processing power needed for heavily loaded
active state protocol operations, whereas the supplemental
processor provides an adequate but power efficient process-
ing capability for the idle mode. As we will show in Section
4.1, other candidate platforms employing a single GPP or
a GPP plus ASICs have problems with scheduling or pro-
grammability.

The reason for using a GPP with minimal functionality
as the supplemental processor is to achieve programming
flexibility. However a GPP is power inefficient and slower
than an ASIC solution. To see how these points impact the
system we develop both hardware and software models for
the supplemental processor and evaluate it with commercial
CAD tools. The evaluation results are presented in Sec-
tion 5. They show that the supplemental processor provides
flexibility with very little power overhead.

The use of multiprocessor architectures for power reduc-
tion purposes is not new. The paper by Olsen showed that
a heterogeneous multiprocessor architecture is power effi-
cient for hand held devices such as a personal data assis-
tant (PDA), because it allows the user idle period to be
efficiently managed [14]. The paper by Kumar showed that
a heterogeneous multiprocessor with a single instruction set
architecture (ISA) is also power efficient even for general
applications [9]. The contribution of our study is to apply
the heterogeneous multiprocessor concept to SDR for the
upper layer protocol processing. There have been several
studies on small microprocessors that consume less than 1
mW power employing asynchronous logic or sub-threshold
circuits [7][12]. However, in this work we implement the
supplemental processor using a conventional design flow, be-
cause results in Section 5.5 show that any additional power
gain will not be significant.

2. OVERVIEW

2.1 Wireless Communication Networks
Roughly speaking it is possible to classify wireless com-

munication systems into three types: wireless personal area
networks (WPAN), wireless local area networks (WLAN),
and wireless wide area networks (WWAN). The WPAN sys-
tem enables users to connect to various personal devices over
short distances without wires. An application might be syn-
chronizing data between a PDA and a desktop computer.
Bluetooth is the most popular system at the moment.

WLAN systems originated from wired LAN systems. They
aim to replace existing wired LANs by high speed wireless
channels. A typical terminal in this network is a laptop hav-

ing wireless access. IEEE 802.11a/b/g systems are the most
widely used WLAN systems.

Finally WWAN systems evolved from a telephone net-
work. The early generation of WWAN systems such as
AMPS, GSM, and IS-95 provide voice service without spa-
tial limitations. The 3rd generation systems provide mul-
timedia services like video telephony on wireless channels.
The CDMA-2000 and W-CDMA systems are common ex-
ample.

In the future, we will need terminals that simultaneously
support many of the above protocols to seamless span WPANs,
WLANs, WWANs, plus their future derivatives.

2.2 Wireless Protocol Stack
We can divide the wireless protocol stacks into two cat-

egories by workload characteristics: the physical layer and
the upper layers. The physical layer consists of various real-
time and computation intensive operations such as forward
error correction and modulation. Due to the tight power
budget and high computation requirements it is common to
implement the physical layer in ASICs.

In contrast the upper layer protocols consist of various
control intensive operations such as media access control, re-
transmission of corrupted frames, terminal mobility support,
and radio resource control. Thus the upper layer protocols
are implemented on a GPP except for some hard realtime
operations such as MAC response generation and encryp-
tion/decryption.

Although both physical and upper layers are within the
scope of SDR, we only focus on upper layer protocol pro-
cessing in this paper.

2.3 SDR terminal
Converging the features of several single mode terminals

into one SDR terminal allows us more convenient wireless
network access. For instance, we commonly use both cellu-
lar phone and wireless LAN card. A cellular phone provides
a low speed but seamless wireless connection whereas a wire-
less LAN card provides a high speed Internet connection at
limited area. The SDR technology enables us to adaptively
select optimal network according to environment.

Furthermore there exist several different wireless protocols
even for almost identical services, for example W-CDMA
and cdma2000. Some countries deploy the W-CDMA sys-
tem for wireless multimedia service and other countries do
cdma2000. The SDR allows international roaming with one
terminal.

3. SYSTEM REQUIREMENTS

3.1 Hard Realtime Response
The IEEE 802.11 network differs from other wireless net-

works in having short intervals between control packets as
part of the data transmission. As shown in Figure 2, the
transmitter and receiver exchange the request to send (RTS)
and clear to send (CTS) MAC control packets prior to data
transmission. This reserves a wireless channel, and the re-
ceiver transmits an acknowledge (ACK) packet after data
transmission to release the wireless channel. Because the re-
served link cannot be used by other terminals while prepar-
ing a MAC response, the IEEE 802.11 protocol requires
a very fast MAC response in order to maximize network
throughput. For the MAC response generation, we need to

258

RTS
Source
Terminal

CTS

DATA

ACK
Destination
Terminal

channel reserved

10usec

Figure 2: Data transmission procedure for IEEE

802.11 networks

0 1

PICH
Decode

PICH
Decode

PCH decoding

Paging message

Power off receiver

PICH

PCH

Signal from
basestation
to terminals

Terminal1

No paging message
to terminal 1

There is a paging
message to terminal 1

Figure 3: Paging Procedure of cdma2000 and W-

CDMA networks

analyze the header of the received MAC packet after decryp-
tion.

3.2 Processing Tiny Operations

3.2.1 Paging in cdma200 and W-CDMA
Paging is a procedure whereby a network identifies the

base-stations having the best wireless paths to a destina-
tion terminal before establishing a user session. A terminal
must be in its ready state to receive paging messages from
base-stations during idle mode. WWAN networks have a
two phase paging procedure so as to minimize the power
consumed for paging message reception. In phase one, ter-
minals periodically wake-up and decode the paging indica-
tion channel (PICH) that carries simple on/off information
indicating the existence of a paging message in the following
paging channel (PCH) slot. The bits on the PICH are not
protected by a forward error correction scheme such as a
convolutional code. The reason for using an uncoded chan-
nel is to save power by powering off error correction, because
it is one of the most power consuming blocks in a wireless
terminal. In phase two, the terminals that have detected
the transmission of a paging message through decoding the
PICH start decoding the PCH with full functionality includ-
ing error correction.

In Figure 3, the first PICH bits indicate that there is no
paging message in the following PCH slot, so the termi-
nal turns of its receiver to save power. However the second
PICH indicates that a paging message will be transmitted in
the following PCH slot. Thus the terminal starts PCH de-
coding. Although PCH decoding is a small task, the proto-
col processor must be activated, because the paging message
includes upper layer information.

3.2.2 Location Update in cdma2000 and W-CDMA
During the idle mode, the terminals of a WWAN can drift

in any direction. If there is no rough estimation of a termi-

Power off

Power off

ATIM
window

ATIM
window

ATIM

CTS

RTS

CTS

DATA

ACK

Terminal 1

Terminal 2

Terminal 3

Power off Power off

All terminals have
no traffic to send

There is a traffic
from terminal 1 to 2

Figure 4: Power management procedure of IEEE

802.11 network

nal location, a network needs to broadcast a paging mes-
sage on the entire network. This is inefficient and avoided
by a location update procedure. Several base stations logi-
cally comprise a location update area. Whenever a terminal
passes the boundary of a location update area, it sends a lo-
cation update message to the base-stations in order to notify
that it is moving to an adjacent location update area. Thus
the network can limit the broadcasting range of a paging
message to within the current location update area.

3.2.3 Power Management Procedures in IEEE 802.11
Network

In an IEEE 802.11 network, packet transmission is only
allowed during the ad hoc network indication map (ATIM)
windows. This restriction is to minimize terminal power
consumption during the idle periods between packet bursts.
As show in Figure 4, all terminals simultaneously wake up
in ATIM windows. The terminals that have buffered traffic
exchange ATIM request and ACK messages with the desti-
nation terminals, so that the destination terminals remain
awake in the following idle period. In the interval between
ATIM windows, source and destination terminals perform
actual traffic transmission while the remaining terminals
turn off their receivers to save power. To decode the ATIM
packet, the MAC layer and the encryption engine must be
involved.

3.2.4 Operation States
WWAN and WPAN networks have several operation states

for terminal power saving and better radio resource uti-
lization. Busy periods, short idle periods, and long idle
periods between packet arrivals are mapped on different
operation states that have different power and radio re-
source overhead requirements. A W-CDMA network has
Cell DCH, Cell FACH, Cell PCH, and URA PCH states,
and a CDMA-2000 network has Active, Control Hold, Sus-
pended and Dormant states. Similarly Bluetooth has Ac-
tive, Sniff, Hold and Park states. Among the above states,
Cell PCH, URA PCH, Suspended, Dormant, Sniff and Park
states are defined for idle period handling. They should be
low power state. In these states the terminal performs vari-
ous operations based on simple field matching.

259

GPP
Base-
band

modem

GPP

ASIC1

ASIC2

ASIC3

Main
GPP

Supple-
mental
GPP

Base-
band

modem

Base-
band

modem

(a)

(b)

(c)

Figure 5: Candidate platforms for the protocol pro-

cessor of an SDR terminal

4. PLATFORM DESIGN

4.1 Platform Comparison
For multiple wireless protocol processing we can consider

three types of processor platforms: 1) a single GPP; 2) a
GPP with ASICs; and 3) two or more GPP cores. The sin-
gle GPP based platform, shown in Figure 5(a), provides the
highest level of flexibility but has a scheduling problem. As
we saw in Section 3.1, the protocol processor must generate
a MAC response message within 10 usec in order to support
the IEEE 802.11 protocol. In addition generally it is nec-
essary to use a realtime operating system (RTOS) to cope
with the algorithm complexity of the upper layer protocols.
However, RTOSs are not able to context switch that fast
e.g. uClinux, a Linux based RTOS, requires more than 10
usec [5]. This rules out organization (a).

Another candidate platform is shown in Figure 5(b). A
GPP is assisted by ASICs that cover idle periods and re-
altime operations. Many commercial IEEE 802.11 modems
are based on this architecture to satisfy hard realtime re-
sponse requirement [11][4][8]. The GPP can be scheduled ef-
ficiently because the ASICs take over the burden of hard re-
altime MAC protocol processing, and ASICs are also power
efficient. However, it is difficult to accommodate future pro-
tocol extensions with this architecture, because of the hard-
wired nature of ASICs.

As an alternative to either of these extremes, we propose
the dual-processor platform shown in Figure 5(c). Because
both processors are programmable, they provide a high de-
gree of flexibility. Two processors can be schedule inde-
pendently by a task partitioning: complex tasks requiring
an RTOS on the main processor, and simple hard realtime
tasks on the supplemental processor. The simple tasks on
the supplemental processor can be programmed without an
RTOS. It allows us to meet the requirement of hard realtime
response. As we will see in Section 5.5, the power consump-
tion of the supplemental processor is almost as low as an
ASIC without sacrificing flexibility.

4.2 Task Partitioning
In this subsection we explore the task partitioning and

its mapping to the hardware. Two major issues of the task
partitioning are the number of tasks mapped onto the sup-
plemental processor and the complexity of the interface be-
tween two processors. In this paper we propose assigning
only idle period tasks and hard realtime tasks to the sup-
plemental processor. This assignment minimizes power and

Data
Memory

(Sup)

Baseband
Modem

Supplemental
Processor

Program
Memory(Sup)

Status
Memory

Encryption
/Decription

Bridge

Power
Manager

Main
Processor

Program
Memory
(Main)

Data
Memory
(Main)

Figure 6: Proposed dual-processor platform for the

protocol processor of an SDR terminal

simplifies the interface between the two processors. The
number of tasks that can be placed onto the supplemental
processor is limited by the hard realtime scheduling require-
ments. If complex algorithms are mapped onto the supple-
mental processor, it becomes difficult to program without
the assistance of an RTOS. As we discussed in Section 4.1,
it is impossible to meet the response time requirements if
we use an RTOS.

In addition, the heavy workload would result in complex
hardware and raise power overhead during idle period oper-
ations. The interface between two processors remains sim-
ple only if we map idle mode tasks onto the supplemental
processor. Most idle period tasks discussed in the previous
section are essentially just a simple field match except for
the IEEE 802.11 networks where additional decryption of
packets may be required. Therefore the length of the data
needed for this field matching is less than packet header size
- smaller than several tens of bytes in wireless communica-
tions. The supplemental processor’s program can thus be
very simple and does not require the support of an RTOS.

4.3 Proposed Platform

4.3.1 Main Processor
The data rate of applications executed on the main pro-

cessor varies widely from voice at 9.6Kbps to packet data at
several Mbps. To support such widely differing date rates
with minimum power consumption, dynamic voltage scal-
ing (DVS) and dynamic frequency scaling (DFS) techniques
are essential for the main processor. The quality of service
(QoS) parameters, determined at an initial session setup,
can be used to indicate voltage and frequency scaling. For
example, information that an established session has a con-
stant bit rate permits aggressive processor scheduling with-
out any slack. At short idle periods between packet bursts,
a clock gating technique can be applied instead of DVS or
DFS. Because the supplemental processor covers long idle
periods the main processor has no need for leakage current
reduction schemes such as adaptive body biasing - it can
simply be shut off. This simplifies the main processor if it
has a supplemental processor compared to the typical low
power GPP for other portable devices [13][6].

4.3.2 Supplemental Processor
The simplicity of tasks performed on the supplemental

processor allows us to minimize its functionality. The in-
struction set of this processor consists only of the essential

260

instructions required to perform small control actions like
paging message decoding. The width of the datapath needs
to be 32 bit for fast packet processing. However, we used a
processor model with an 8 bit datapath for our experiments
because it was difficult to find a small 32 bit commercial
model with a complete programming environment. In Sec-
tion 5.3.2, we will show how a 32 bit datapath yields better
power performance than an 8 bit datapath. Thus our power
studies using a 8 bit processor are a worst case.

The supplemental processor requires a timer to generate
events because many operations in wireless protocols are
timer based. The timer events are processed by interrupt
handling logic. The supplemental processor has two inter-
rupt ports, one for an interrupt from the baseband modem
indicating the arrival of a new packet, and another port for
an interrupt from the timer. A clock gating technique is
used in the supplemental processor to reduce the power dis-
sipation during idle periods between interrupt events. The
timer, interrupt handling logic, and clock gating provide an
efficient implementation method for event driven applica-
tions.

In addition, the supplemental processor is equipped with
a hardware comparator. The hardware comparator is de-
signed for the field matching operation that the supplemen-
tal processor is frequently called on to perform.

The supplemental processor needs a hardware random
number generator (RNG) that is used for a random back-
off operation performed in the MAC layer. The execution
time of a software based RNG is too long to meet the tim-
ing requirements. The randomness required for the back-off
operation need not be of a high quality, so a linear feed-
back shift register (LFSR) is adequate. However we need
to consider the impact of the initial seed of the LFSR. The
initial value of a flip-flop is not random because small dif-
ferences in the size of the transistors in a flip-flop lead to
bias. This in turn can induce a load sharing problem in the
ad hoc mode of the IEEE 802.11 network. The overhead of
periodic beacon packet transmission is unevenly distributed
if we use a LFSR without a proper random seed. To avoid
such a situation we place a direct access path so that the
power manager can load the initial seed into the LFSR.

4.3.3 Memories
As shown in Figure 6, the memory in our platform can

be classified into three types, program memory, state mem-
ory, and data memory. The program memory stores the
execution code of the processors. The program memory of
the supplemental processor is accessed by both the main
and supplemental processor. The main processor loads the
execution program of the supplemental processor prior to
activating it. A single port SRAM is used for the program
memories of both processors.

Meanwhile the state memory stores protocol state infor-
mation such as a terminal identifier and the QoS parameters
of established sessions. When supporting the IEEE 802.11
protocol, both the main and supplemental processor need
to be activated at the same time and simultaneously access
the state memory. Thus a dual port memory is used for the
state memory. The size of this memory varies according to
the protocol. However, because the supplemental processor
needs just a small portion of the state information, the size
of the state memory need not exceed several hundred bytes.

The data memory stores user traffic processed by the pro-

Baseband
modem

Supplemetnal
processor

Main
processor

Packet Arrival

MAC
Packet

Decoding

Tx CTS

RTS

CTS

DATA

Packet Arrival

Packet Arrival
Tx ACKACK

Time

Figure 7: Packet reception procedure while execut-

ing the IEEE 802.11 protocol

tocol layers. The baseband modem stores packets which are
received from antenna at the data memory of the supple-
mental processor. The processed packet is passed to the
main processor by memory copy to the data memory of the
main processor. For transmission, packets are copied in the
reverse direction.

4.3.4 Power Manager
A power manager controls the power state of all blocks

in a wireless terminal. Therefore, it is always powered even
at idle periods. It has a timer to trigger a periodic wake-up
event. There are three input ports in the power manager.
One input port from the main processor is used to config-
ure the operation mode of the power manager according to
the operating state change of a protocol. Another input
port is assigned to the supplemental processor. Through
this port, a request for the activation of the main processor
is transmitted when the supplemental processor receives a
communication request. The third port is connected to the
baseband modem. If the baseband modem detects a signal
on a PICH, it requests activation of the supplemental pro-
cessor for PCH decoding through the third interrupt port.

4.4 Application Examples
Because the protocol processor discussed in this paper

aims to support multiple wireless protocols, its operation
procedure changes according to the type of protocol loaded
onto the platform. Figure 7 shows the interaction between
the main processor and the supplemental processor when
the IEEE 802.11 protocol is loaded onto the protocol pro-
cessor. The operation procedure shown in Figure 7 is when
the data packet matches with the terminal’s address. When
this occurs the supplemental processor assists the main pro-
cessor by independently generating MAC response messages
during the data reception procedure.

Figure 8 shows the paging procedure when the W-CDMA
protocol is loaded onto the platform. The operation proce-
dure shown in Figure 8 is when the destination of the paging
message matches with the terminal. After periodically be-
ing activated by the power manager, the baseband modem
wakes up the supplemental processor if the PICH bits in-
dicate there will be a paging message on the PCH channel.
Only the supplemental processor is activated while decoding
a paging message. The main processor is not activated un-
til the supplemental processor decodes the paging message
completely.

261

Baseband
modem

Power
manager

Main
processor

Active
request

PICH

Paging
Response

Power ON

Paging

Supplemental
processor

Active
Request

Paging response

Paging

Power ON

Decode paging

Time

Figure 8: Paging message reception procedure while

executing the W-CDMA protocol

5. EXPERIMENT AND ANALYSIS

5.1 Models for Experiment

5.1.1 Main Processor
As our main processor model we used the OPENRISC1200,

a 32 bit open source RISC processor [3]. The features of
OPENRISC are very similar to other commercial GPPs used
in mobile devices except that it does not support power re-
duction techniques like DVS, DFS, and clock gating. How-
ever, this is not important because this model is only used
for wake-up power measurement, where these techniques are
not involved. We don’t measure the dynamic power of the
main processor, because it consumes far more power than
the supplemental processor. The features of our HDL model
for the main processor are as follows.

• 32 bit RISC processor

• Single issue 5-stage pipeline in-order machine

• Harvard architecture

• 32bit Hardware Multiplier

• 8K data cache with MMU

• 8K instruction cache with MMU

5.1.2 Supplemental Processor
Although we will show that a 32 bit processor is optimal

for the supplemental processor in Section 5.2.2, we take as
a base the architecture of a commercial 8 bit processor, Mi-
crochip’s 16F84, in order to develop a power model of the
supplemental processor [1]. It is used for a sensor network
node that has similar requirements. We added a RNG, a
hardware comparator, and a data memory interface for fast
packet processing. Figure 9 shows the architecture of the
supplemental processor model. The detailed configuration
of the supplemental processor is as follows.

• 8 bit RISC architecture

• Single issue 2-stage pipeline in-order machine

• Harvard architecture

• 33 instructions

• 68 x 8 bit registers

• Hardware timer, interrupt handler, and clock gating

• Hardware random number generator

• Interface to data memory

• Hardware 48 bit comparator

• 4K x 14 bit program memory

• 4K x 8 bit dual-port state memory

5.1.3 Application Software
For this study we selected the power managment proce-

dures for the IEEE 802.11 protocol, which is depicted in
Figure 4, as the application model for our dynamic power
measurements. This procedure was selected because it is
currently one of the most complex and time constrained ap-
plications for packet reception.

The IEEE 802.11 application model is divided into two
parts: an interrupt service routine and the main routine.
In order to avoid an event loss, the interrupt service rou-
tine performs only a minimal number of operations such as
hardware re-initialization. The main routine consists of an
infinite loop. At the beginning of each iteration, the main
routine checks the event flags. If there are no events, the
main routine enters a clock-gated mode to save power by
executing sleep instructions. If an interrupt is generated by
the timer or the baseband modem, the main routine acti-
vates the clock signal and checks the event flags to identify
the interrupt source. In the event of a packet reception,
the main routine loads the packet header into the hardware
comparator to analyze whether the packet matches with the
terminal’s address or the broadcast address. If the packet
matches and is valid, the main routine performs the ap-
propriate actions like generating a response message and
informing the main processor of a packet reception.

5.2 Dynamic Power
Dynamic power is only consumed during instruction exe-

cution. To measure it we synthesized our hardware model
using Synopsys’ Design Compiler and extracted power re-
sults with PrimePower. Memory was created with Artisan’s
memory compiler. Figure 10 shows the experiment flow used
for dynamic power measurement. We did not consider the
power consumption due to interconnection wire because gen-
erally it is not dominating factor at 0.18u technology which
we used for the experiment.

5.2.1 Power Consumption Profile of the Supplemen-
tal Processor

Figure 11 shows the power consumption profile of the sup-
plemental processor when it executes the software model
outlined at Section 5.1.3. We see that the blocks that con-
sume the most powers in the supplemental processor are the
timer and the program memory. The timer is power hun-
gry because it has to continuously monitor when to wake-up.
Reducing power consumption of the timer will have a notice-
able impact on the supplemental processor’s dynamic power.
In addition, its program memory consumes a large fraction
of power because it is relatively large compared to other
blocks on the supplemental processor. Thus it is important
to minimize the program size of the supplemental processor.
This is help by the fact that the idle mode operations such
as paging and location update are can be compactly coded,
because they simply consist of header analysis of packets.

262

Program
Memory

(4K, 14bit)

Program Counter

System Stack

Instruction
Register

Register
File

(68, 8bit)

Instruction
Decoder &

Control

mux

STATUS reg

ALU

W reg

Random Number
Generator

Timer

PIO

Data
Memory
(4K,8bit)

Data Memory
Interface

Interrupt
Reg

Comparator

Figure 9: The architecture of the supplemental processor for the experiments

Behavioral
HDL model

(*.v)

Synthesis
Tool

(Design
Compiler)

Structural
HDL model

SDF File
(Timing Info)

Memory

Compiler

Power Analysis Tool

(PrimePower)

Library
Info

(*.db)

HDL Simulator

Behavioral
Memory

Model

Memory
Specification

Power
Report

VCD File

(Switching
Info)

Standard

Library

(tsmc18.db)

Application
Program

(*.c)

Compiler

Executable
File

Figure 10: Experiment flow to measure dynamic

power

5.2.2 Widening Datapath
From the power consumption profile in Figure 11, we can

predict the impact of widening data path from 8 to 32 bit.
There are several inefficient points about the current hard-
ware model for the supplemental processor that may be con-
trolled by using 32 bits. The 16F84 chip, the baseline of the
supplemental processor, was designed for a sensor network.
An 8 bit data path, a large register file, and the absence
of external memory are appropriate for this application do-
main. However, a wider datapath and a smaller register file
are more appropriable for our use, because the MAC pro-
tocol requires frequent data memory access. Our proposed

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

Tim
er

Pro
gr

am
 M

em
or

y

Reg
ist

er
 F

ile

RNG

Com
pa

ra
to

r

Sys
te

m
 S

ta
ck

In
te

rru
pt

 C
on

tro
lle

r

Con
tro

l L
og

ic

Sta
tu

s M
em

or
y

Pro
gr

am
 C

ou
nt

er

ALU

Dat
a

M
em

or
y

Figure 11: Power consumption profile of the supple-

mental processor

Minimum Minimum Minimum
Operation Frequency Dynamic

Cycles Power

360 136 Mhz 2.1 mW

Table 1: Minimum dynamic power of the supple-

mental processor

16x32 bit register file is about the same size of the 68x8 bit
register file normally in the 16F84 chip. This change has lit-
tle effect on power consumption but a 32 bit ALU increases
its power consumption from 2.5% to 10% of total. However,
a 32 bit datapath allows to reduce the operating frequency
almost to one quarter of the 8 bit version. The reduction in
operating frequency causes a power reduction effect on all
blocks of the supplemental processor.

5.2.3 Minimum Dynamic Power of the Supplemental
Processor

The following equation shows the relation between oper-
ation frequency of the supplemental processor and its dy-

263

Supplemental Main
Processor Processor

Acell(µm2) 4.17E4 2.2E5
Ainter(µm2) 2E5 4.2E6

Ewake−up(µJ) 0.11 6.04
Edynamic(µJ) 42.3 -

Ratio(Ewake−up/Edynamic) 0.26% -

Table 2: Wake-up energy of the processors

namic power consumption.

P = αf, where α = 1.6E-11 (1)

In order to obtain the coefficient α in equation (1), we mea-
sured the dynamic power of the supplemental processor at
100 MHz.

To keep power low, it is important to find the minimum
operating frequency that meets the processing time con-
straints. We executed the worst case software model out-
lined previously in Section 5.1.3 and found that we needed
about 360 cycles to generate a MAC response. In addi-
tion there is a need to encrypt/decrypt the MAC packet.
This is usually done with a separated hardware encryp-
tion/decryption engine. The implementation of an advanced
encryption standard (AES) engine in [10] shows that cipher-
ing will take about 320 cycles. If we assume that 5 usec are
reserved for the physical layer, this leaves 5 usec for the
MAC layer (recall, we require a response in 10 usec). Thus
a total of 360+320 cycles must be completed in 5 usec. This
yields a minimum operating frequency of (360+320)/5usec
= 136 MHz. By substituting this result into Equation (1),
we get about 2.1 mW as the minimum power consumption
of the supplemental processor. These results are shown in
Table 1.

5.3 Wakeup Power
The wake-up power is the power required for initial circuit

power up. Because there is frequent power on/off operations
during idle periods, we need to analyze the impact of the
wake-up power to evaluate power efficiency. The wake-up
energy is represented by the following equation where the C
is the aggregated capacitance of whole circuit and the V is
its operating voltage.

Ewake−up = CV 2 (2)

If we assume a fixed operating voltage, the wake-up energy
depends on the aggregated capacitance of a circuit. Thus
the wake-up power analysis requires the derivation of the
parasitic capacitance of a circuit. We assume the following
to simplify the derivation of parasitic capacitance:

A1: The circuit is only built of two input NAND gates.

A2: The initial gate inputs are evenly distributed between
0 and 1.

A3: Half of the interconnection area is covered with metal
wires.

A1 simplifies the derivation of an average parasitic capaci-
tance per unit area, and means we can avoid the extraction
of the parasitic capacitance of all library cells. A2 is required
to determine the initial input value of two input NAND gates

when we measure wake-up current. Finally, A3 allows us to
estimate the effect of interconnection wires.

Based on A1, we extract the netlist and parasitic capaci-
tance of a two input NAND gate from the TSMC18 standard
library layout information. With the extracted information
we perform Hspice simulations and derive the energy con-
sumed for the power up of the NAND gate cell (ENAND2).
Next we calculate a gate count by the dividing of the to-
tal cell area (Acells) obtained from the synthesis tool by the
area of a two input NAND gate (ANAND2). To analyze the
impact of interconnection wires we use the parametric test
results provided by MOSIS(Cinter) [2]. From the synthesis
tool, we also extract the area of interconnect wires (Ainter).
From A3 we can easily estimate the capacitance of inter-
connect wires and the energy consumed to charge up the
interconnect wires. We combine these terms to calculate
the energy for the system wakeup (Ewake−up) as follows:

Ewake−up = ENAND2

Acells

ANAND2

+ CinterV
2 (3)

Table 2 shows the wake-up energy of the main and supple-
mental processors and the parameter used in this calcula-
tion.

To compare dynamic energy (Edynamic), we convert the
dynamic power, shown in Table 1, into dynamic energy by
multiplying by the wake-up period (20 ms) of the ATIM
window. From this we see that the wake-up power has no
significant impact on the consumption profile of the plat-
form. The wake-up energy of the supplemental processor is
about 0.26% of its dynamic energy. This implies that the
power state of the supplemental processor can frequently
be changed without increasing a significant power penalty.
However the wake-up energy of the main processor is about
14% of the dynamic energy of the supplemental processor.
Therefore the main processor should be activated only when
necessary. Our separation into two asymmetric processors
facilitates this.

5.4 Stand-by Time Analysis
Stand-by time is the time a terminal can operate without

battery recharging. The stand-by time is determined by
following terms: Ia, the current in the active period; Ta,
the length of the active period; Is, the current in the sleep
period; Ts, the length of the sleep period; and Qbattery the
capacity of a battery. The term Is consists of the leakage
current of the platform, and Ia is the current flowing into
circuits in the active period. Then the stand-by time of a
terminal is represented by the following equation:

Stand-by time = Qbattery
Ta + Ts

IaTa + IsTs

(4)

The term Ia is composed of several other terms: Isyn, the
current of the frequency synthesizer; Itrans, the current of
the receiver module of the transceiver; Ibase RX , the current
of the receiver module of the baseband modem; and Iproc,
the current of the supplemental processor:

Ia = Isyn + Itrans RX + Ibase RX + Iproc (5)

In our calculations we use the following parameters: For
active and sleep durations, we use the common default val-
ues, Ta = 20 msec and Ts = 80 msec. The battery capacity
is determined from the data sheet of a Panasonic battery,
Qbattery = 1035 mAh. The leakage current in the sleep pe-
riod is assumed to be Is = 0.1 mA. The parameters for

264

 10

 11

 12

 13

 14

 15

 16

 17

 0 5 10 15 20 25 30

S
ta

nd
by

 T
im

e
[H

ou
r]

P_supplemental [mW]

Measured point

Ideal point IEEE802.11a

Figure 12: Stand-by time of the IEEE 802.11a ter-

minal

the circuit power consumption in the active period are from
Atheros Communication’s 802.11a chip parameters, Isyn =
72 mA, Itrans RX = 100 mA and Ibase RX = 170 mA [11].

Figure 12 shows the resulting relationship between the
stand-by time of an IEEE802.11a terminal and the power
consumption of the supplemental processor. The reason for
choosing the IEEE 802.11a terminal for stand-by time anal-
ysis is that the power consumption of the supplemental pro-
cessor is greatest for the IEEE 802.11 protocol.

5.5 Impact of Low Power Supplemental
Processor

According to the dynamic power analysis result in Sec-
tion 5.2.3, the average dynamic power of the supplemental
processor is 2.1 mW, see Table 1. Looking this value up on
x-axis of Figure 12 yields a stand-by time of about 14.9 hours
for the IEEE 802.11a terminal - refer to the measured point
of Figure 12. To compare with a power efficient ASIC based
platform: assume an ideal case that consumes 0 watts for
the MAC protocol processing. In this ideal case the stand-
by time of the IEEE 802.11a terminal is about 15.1 hours -
see the ideal point of Figure 12. The difference between the
measured point and the ideal point is just 0.2 hours, because
the power consumption of the supplemental processor is not
a dominant source of power dissipation as compared to other
blocks such as the baseband modem and transceiver. Thus
the supplemental processor based on GPP is also a power
efficient solution.

6. CONCLUSION
In this paper we proposed a flexible hardware platform for

the upper layer protocols of an SDR terminal. Our analy-
ses showed that a GPP, while flexible enough, is difficult to
program given realtime constraints. As a solution we pro-
posed an asymmetrical dual-processor platform comprised of
two GPPs: a conventional main processor, and a simple low
power supplemental processor. The supplemental processor
provided the flexibility and realtime response capability with
minimum power overhead. We validated the efficacy of the
supplemental processor from a power and response time per-
spective using commercial CAD tools. The stand-by time
analysis showed that ASICs are only marginally more power
efficient. In summary the dual-processor platform meets the
realtime deadlines of an SDR terminal at low power while
maintaining programmability.

7. REFERENCES
[1] http://www.microchip.com.

[2] http://www.mosis.org.

[3] http://www.opencores.org.

[4] Jim Bohac. Flexible Chip Set Arms 802.11a/b/g
WLANs. Microwaves & RF, May 2003.

[5] Hyok-Sung Choi and Hee-Chul Yun. Context
Switching and IPC Performance Comparison between
uClinux and Linux on the ARM9 based Processor.
Technical report, Samsung Electronics, 2005.

[6] Lawrence T. Clark, Eric J. Hoffman, Jay Miller,
Manish Biyani, Yuyun Liao, Stephen Strazdus,
Michael Morrow, Kimberley E. Velarde, and Mark A.
Yarch. An Embedded 32-b Microprocessor Core for
Low-Power and High-Performance Applications. IEEE

Journal of Solid-State Circuits, 36(11):1599–1608,
November 2001.

[7] Virantha Ekanayake, Clinto Kelly IV, and Rajit
Manohar. An Ultra Low-Power Processor for Sensor
Networks. In ASPLOS, 2004.

[8] Toshio Fujisawa, Jun Hasegawa, Koji Tsuchie, Tatsuo
Shiozawa, Tetsuya Fujita, Toshitada Saito, and Yasuo
Unekawa. A Single-Chip 802.11a MAC/PHY with a
32-b RISC Processor. IEEE Journal of Solid-State

Circuits, 38(11):2001–2009, November 2003.

[9] R. Kumar, Keith I. Farkas, Norman P. Jouppi,
Parthasarathy Ranganathan, and Dean M. Tullsen.
Single-ISA Heterogeneous Multi-Core Architectures:
The Potential for Processor Power Reduction. In
MICRO-36, 2003.

[10] Henry Kuo, Ingrid Verbauwhede, and Patrick
Schaumont. A 2.29 Gbits/sec, 56 mW Non-Pipelined
Rijndael AES Encryption IC in a 1.8V, 0.18 um
CMOS Technology. In IEEE Custom Integrated

Circuits Conference, 2002.

[11] Teresa H. Meng, Bill McFarland, David Su, and John
Thomson. Design and Implementation of an
All-CMOS 802.11a Wireless LAN Chipset. IEEE

Communication Magazine, 41(8):160–168, August
2003.

[12] Leyla Nazhandali, Bo Zhai, Javin Olson, Anna
Reeves, Michael Minuth, Ryan Helfnd, Sanjay Pant,
Todd Austin, and David Blaauw. Energy
Optimization of Subthreshold-Voltage Sensor Network
Procssors. In ISCA, 2005.

[13] Kevin J. Nowka, Gary D. Carpenter, Eric W.
MacDonald, Hung C. Ngo, Bishop C. Brock, Koji I.
Ishii, Tuyet Y. Nguyen, and Jeffrey L. Burns. A 32-bit
PowerPC System-on-a-Chip With Support for
Dynamic Voltage Scalaing and Dynamic Frequency
Scaling.

[14] C. Michael Olsen and L. Alex Morrow.
Multi-Processor Computer Systems Having Low
Power Consumption. In PACS, 2003.

[15] Upkar Varshney and Radihika Jain. Issues in
Emerging 4G Wireless Networks. IEEE Computer,
June 2001.

265

