
Abstract

The increasing need for security has caused system

designers to consider placing some security support

directly at the hardware level. In fact, this is starting to

emerge as an important consideration in processor

design, because the performance overhead of support-

ing security in hardware is usually significantly lower

than a complete software solution. In this paper, we

investigate integrating some security support into hard-

ware. We show that security support can be added at

some acceptable cost in area and performance.  We

propose a processor extension called ChipLock. It pro-

vides hardware security support for a mostly untrusted

operating system to ensure the integrity and confidenti-

ality of all computational results. ChipLock’s modular

design can be easily integrated into existing hardware

platforms with only slight modification to the operating

system. ChipLock includes a built-in hardware Key

Manager that supports symmetric key assignment, and a

read-only-memory, TrustROM, that executes secure

hardware routines. The software required is a small

trusted portion of the operating system called Trust-

Code. We modeled ChipLock’s architecture on a full sys-

tem simulator and showed that, for SPEC2000

benchmarks, it adds about an average of 20% to the

execution time,  primarily from cryptographic and veri-

fication latencies.  In addition, layout studies show an

area cost of about 8 mm2 in 180 nm technology. This

translates to an area overhead of 5% ~ 15% depending

on the processor type.

1  Introduction 

Traditionally, security has been handled in software.
The widespread demand for security support means that
it is becoming worthwhile to move some of the func-
tionality into hardware. Several papers [1], [2] have pro-
posed hardware support for security. The continued
advances in integrated circuit technology now mean it is
possible to implement security routines in hardware that
out perform the corresponding software solutions. Intel

and Microsoft's Trusted Computing Platform Alliance
(TCPA), ARM's TrustZone and Texas Instruments's
Wireless Security are just a few examples. These solu-
tions provide both software and hardware security that
protects the developer's intellectual properties (IP) and
works to eliminate malicious user attacks. 

We have designed a secure architecture called Chip-
Lock. It is not tied to a particular architecture and so can
be viewed as an extension that can be inserted into
existing or future microprocessors. In ChipLock we
chose to assume that a very small part of the operating
system is trusted.  We call this part TrustCode.  Trusted
code exists in an on-chip ROM to interface with Trust-
Code.  We call this TrustROM.  By creating TrustCode
and separating it from the operating system, we guard
against certain software attacks such as tampering and
eavesdropping.  We also decided that certain critical
cryptographic software routines needed to be imple-
mented in hardware to make them tamper proof. Our
goal is to ensure the integrity and confidentiality of all
computational results. We accomplish this goal by
ensuring against binary and shared library tampering
during execution. We assume the microprocessor and
the storage device is trusted. Others have shown meth-
ods to protect storage devices, see [18] for example.
ChipLock focuses on the microprocessor side. 

ChipLock is designed to support a high level of secu-
rity in hardware. There is a performance and area cost.
The performance cost is small compared to a software
solution.  The next section describes our security model.
Section 3 describes the microarchitectural support to
implement this model. Section 4 describes how we eval-
uate the  cost of security support. The results of evalua-
tion are presented in Section 5 followed by conclusions
in Section 6.

2  Security Model 

The primary assumptions we made when designing
ChipLock were that only the processor and TrustCode
were trusted. Everything else is untrusted. Therefore,
this implies all code and data moved off the processor
during context switches and interrupts are encrypted.
Similar to [2] we maintain a strict, tamper free level of
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on-chip security. However, unlike [2], we try to mini-
mize the changes in our processor since the hardware
components related to security management are not
directly related to normal processor execution. Tempo-
rary information moved to memory is also secured by
means of the cryptographic/verification engines. Any
content leaving or entering the microprocessor must
have an assigned key to protect it from outside attacks.

The protocol is as follows. When a binary is brought
into memory for execution,  ChipLock obtains a hash of
that binary.  For security purposes a hash is an algo-
rithm, which when applied to a data set takes an arbi-
trary input size and produces an output of fixed size.
When implemented correctly, the hash can be used to
verify the integrity of computer data. ChipLock uses the
hash to detect unauthorized changes in the binary during
execution.  We chose to use a hash instead of marking
the memory as read only to allow for dynamic code gen-
eration and modification.  During execution, the proces-
sor assigns temporary symmetric keys to encrypt and
decrypt the data as it moves to and from memory.  The
temporary keys are refreshed periodically. Temporary
keys are removed at the end of execution or during con-
flict misses in the key manager’s table.  The key man-
ager is discussed in Section 3.4.  Context switches are
not considered the end of a full binary execution and
therefore, no temporary keys are removed during that
time.

Although we do not discuss it in this paper, we
assume the storage device has a secure microcontroller.
This microcontroller is necessary for interacting with
ChipLock’s architecture. This requirement makes it
important for the device driver of the storage device’s
microcontroller to be part of the trusted part of the oper-
ating system or embedded in ChipLock.

In order to maintain the proper security, TrustCode
should be isolated in an address space separate from the
rest of the operating system, as suggested in [17]. This

portion of the kernel directly interacts with ChipLock’s
TrustROM so it is necessary to protect it from attacks.
The size of TrustCode is small. In fact, the majority of
the code necessary for communication between the
hardware and the operating system is embedded in
ChipLock’s architecture.  ChipLock functions as a fail-
closed system. In other words, if TrustCode is corrupted
in any way, ChipLock will cease to operate.  Since the
obvious attack is to corrupt TrustCode,  isolating the
trusted portion of the operating system into a separate
address space makes it more easy to secure.

We have not addressed any physical attacks based on
specialized methods such as power analysis or ultravio-
let rays. In addition, we have not considered the exist-
ence of any virtual machine in our security model.
Virtual machines that precisely reconstruct the hardware
architecture allow hackers to simulate attack schemes.
Hardware that can be recreated is more vulnerable to
attacks because of this property. ChipLock has a hard-
ware identifier that takes part in registering the micro-
processor, which does provide some barrier to
recreating ChipLock’s hardware exactly.

3  The ChipLock Architecture 

Figure 1 illustrates ChipLock’s architecture. In addi-
tion to the microprocessor, ChipLock consists of a
Crypto Unit, a Verification Unit, a Key Manager, and
TrustROM. ChipLock’s hardware design borrows from
the procedures followed in the Secure Sockets Layer
(SSL) protocol [6]. The Crypto Unit encrypts and
decrypts content coming into and out of the L2 cache.
With the exception of regions in memory that may not
require encryption, data transactions resulting from
load/store instructions and L2 cache misses remain

encrypted. Integrity and confidentiality are maintained

Figure 1. ChipLock Architecture
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by the Crypto and Verification Units, respectively. The
TrustROM component isolates the region where the
microprocessor is executing security related code. Nei-
ther software applications nor the operating system can
access this code. Symmetric keys are managed on chip
by the Key Manager Unit. The Key Manager consists of
two separate key tables, one for general keys and one
for shared library keys. 

In general, when an application loads onto external
memory, ChipLock observes the system calls made from
the operating system. When system calls are made that
are related to loading and assigning specific memory
addresses, TrustROM is executed without the knowl-
edge of the untrusted portion of the operating system. It
then assigns a symmetric temporary key to the memory
locations that are required in running the application.
For memory allocations that occur during execution,
ChipLock can also gain control of the microprocessor
through the TrustROM in a similar manner. These sym-
metric keys are stored in the Key Manager. For shared
libraries, if the symmetric key already exists in the
shared key table, another entry in the Key Manager is
allocated with the identical symmetric key after check-
ing the library program’s hash. After all this is com-
plete, the processor starts executing the application. On
L2 cache misses, the validity of the key is checked. If
the key is not valid, key authentication is re-initiated. A
symmetric key is re-assigned to the corresponding sec-
tion containing that part of the code and/or data.

3.1  ChipLock and the SSL protocol

  ChipLock borrows some of the concepts proposed in
SSL. The SSL protocol has been proven to be secure
and is widely used in network communications.  By
leveraging ideas from SSL we sidestep the need to
prove our approach is secure. We maintain confidential-
ity by adopting the cryptographic standards defined in
SSL. We also adopted the protocol in generating sym-
metric keys for these cryptographic algorithms. We call
this phase key authentication in ChipLock. Integrity of
code/data is done by also adopting the suggested hash

algorithms in SSL.

3.2  Cryptographic Unit

The Crypto Unit is intended to encrypt and decrypt
data using a symmetric key algorithm. There is no need
for  us to use asymmetric keys, because symmetric keys
are much less expensive there is no multi-agent sharing.
These keys are used for encrypting the actual data exist-
ing on memory. We have made area estimates of the
impact of ChipLock. One set of results in Table 1,
shows that the area overhead of adding a Crypto Unit
for symmetric keys on chip is quite modest. For exam-
ple, AES only adds a 5% area overhead for typical high
performance processors. Tables 1 and 2 are generated
from the Synopsis Design Compiler with synthesizable
code provided by [12]. We compared the estimated area
and latency with commercial products in [12] and found
these were optimistic in terms of performance and pes-
simistic in terms of area. This is because the delay was
relaxed in the interconnect wire model and did not take
into account placement and routing difficulties. On the
other hand, area was estimated assuming worst case row
utilization for placement. For simplicity, we assumed
the Crypto Unit would use AES because it is widely
used for symmetric key encryption [5]. We assumed this
unit can encrypt and decrypt a cache line in 16 rounds.
Furthermore, we optimized the AES to reduce latency.
This explains the increase in area and smaller critical
path/round in Tables 1 and 2. The overall latency is
2.28ns x 16 ~ 36ns, or about 35 cycles for our target sys-
tem clock. The latency of the Crypto Unit—especially
the decryption latency—directly impacts the overall
performance of the microprocessor, because cache miss
penalties are increased as a result. Figure 2 shows the
decrease of Instructions Per Cycle (IPC) in SPEC2000
for various latencies in the Crypto Unit. We varied the
latency of the Crypto Unit in a typical out-of-order
machine. The latency was added to external memory
transactions. As we increase latency, we model the
effect of a Crypto Unit that requires less area and power.
A latency of 2048 cycles models a Crypto Unit imple-
mented with a microcontroller executing cryptographic
software. We can see dramatic decreases in IPC for
latencies that are long, especially for high memory traf-
fic benchmarks. It suggests that a system where perfor-
mance is of importance should minimize decryption and
encryption latencies on L2 cache misses or writebacks.
With this in mind the shaded rows in Tables 1 and 2 are
ChipLock’s choice for the Crypto and Verification Unit

.

Figure 2. IPC for various latencies
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TABLE 1. Area overhead for crypto. & verification units

TABLE 2. Latency for crypto. & verification unit 

* From [10],[11]

** FO4 : Fanout of 4 inverter delay

3.3  Verification Unit

The Verification Unit checks for software tampering
during execution. If such tampering is detected, it alerts
the processor so that the execution can be aborted. Table
2 shows that verification is expensive relative to en/
description  in terms of performance. This latency is dif-
ficult to reduce. The hash itself also becomes a large
overhead, in terms of space. The well-known SHA-1
hash algorithm is used in ChipLock. By definition,
SHA-1 is a stream algorithm that processes a message
512 bits at a time until the end of the message is
reached. Since it is desirable to verify whenever a cache
block is read, if we use SHA-1 we can streamline the
verification process by setting our cache block size to be
equal to the hash block size of 512 bits. Any code or
data that has been tampered with would result in an
unpredictable microprocessor execution state, and at

worst, would result in an encrypted core dump that dis-
turbs the operation of the system. However, under no
circumstances will vital information be exposed exter-
nally in an unencrypted format during the execution
time. ChipLock can also be modified to support the hash
routine in [1] so that verification latency is reduced.

3.4  Key Manager, Hardware Identifier, 

and Random Number Generation

The Key Manager is an integral part of ChipLock and
the most important feature in a trusted platform. Chip-
Lock divides the Key Manager into two subcomponents,
a general key table and a shared key table. The Key
Manager determines key assignment, revocation, and in
some cases generates keys for transactions. ChipLock
uses circuit level techniques that are simple but effective
to implement this feature. Figure 3(a) shows a block
diagram of the Key Manager. Each table has a tag and
data array just like a conventional cache. However,
since it must refresh itself from time to time we use a
decay counter similar to that in [13] to trigger key inval-
idation. Figure 3(b) shows the contents inside the tag.
The tag for the key table is similar to that of a trace
cache. It holds the start address of the assigned key and
the number of pages assigned. It is indexed by the pro-
gram counter and process ID. The null bit exists for
software applications that are not encrypted. (Config-
urable on ChipLock and used for legacy software.) If the
null bit is set to zero, data coming in and going out of
the chip is neither decrypted nor encrypted. A counter is
required to implement key revocation. ChipLock does
not use a conventional timer since the size of the
counter would be extremely large and randomness is
desirable. However, precision is not important, so to
save space we chose a decay counter, which uses a
capacitor that requires no more space than a single flip-
flop. We modeled it with HSPICE and noticed it took
approximately 10ms to fully discharge a capacitor
equivalent in size to a single flip-flop. This can make a
decay counter roughly equivalent to a 20 ~ 25 bit
counter. For a single flip-flop, we used a standard flip-
flop cell provided from the Artisan cell libraries for
TSMC 0.18 . A discharge event updates a relatively

Area ( )

AES (Rijndael) 5.374

DES (64 bits) 2.370

Blowfish 1.744

TEA (Tiny Encryption Algorithm) 0.708

SHA 1.011

CRC 0.173

Rounds
Critical path
delay / round

Total
Latency

FO4**

AES (Rijndael) 16 2.28ns 36.48ns 34.21

DES (64 bits) 16 2.78ns 44.48ns 41.62

Blowfish 16 12.15ns 194.4ns 181.89

TEA (Tiny Encryption 

Algorithm)
32 5.21ns 166.72ns 77.99

RSA * 1.67E7 3ns 50ms 44.91

SHA 80 4.02ns 321.6ns 60.18

CRC 4 3.88ns 15.52ns 58.08

MD5 * 64 4.88ns 312.32ns 73.05

mm
2

Figure 3. (a) Key Manager  (b) Key Tag format
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small counter. When the counter overflows, the key
assigned to that entry of the key table is revoked or
invalidated.  The application may continue to operate
out of cache. In the meantime a temporary symmetric
key is generated. This new symmetric key is then allo-
cated in the key table by the Key Manager. When a L2
cache miss eventually occurs this new key will have to
be used for transfers.

In general, an L2 cache miss causes the Key Manager
to see if the key exists or is invalid for the specific miss
address. The Key Manager broadcasts the address to the
general key table and shared key table. A hit or miss
results. On a key table miss, the key authentication step
is performed: a temporary symmetric key is generated
during this process (it may already be created as in key
revocation above) and the new key is allocated in the
Key Manager. The key authentication step is also per-
formed on an application load. We differentiate shared
keys and general keys by the properties assigned to the
page to which the address is pointing. On initializing an
allocated memory location, the operating system assigns
a property to each memory block. By looking at this
property, we determine if this block of memory should
be assigned a key that belongs to the general key table
or the shared key table. 

In addition to the features enumerated above, Chip-
Lock requires a random number generator (RNG) and a
unique hardware key generator. A hardware key is a
unique ID that is created at startup time. It is important
to generate unique hardware keys. A hardware ID/key is
used to uniquely identity the microprocessor chip and to
prohibit other unauthorized peripherals and storage
units and network connections to interact with the
microprocessor. This hardware key serves as an identi-
fier which can be equally accessed by anyone who can
physically access the microprocessor. We assume hard-
ware key uniqueness is generated from process intra-die
silicon process variation—sensors are deployed across
the chip to measure the process variation. Although, this
might be useful in generating unique hardware keys, it
is not acceptable for the random number used in gener-
ating a symmetric key. Hence, ChipLock requires a sep-
arate random number generator for symmetric key
creation. Conventional pseudo-random number genera-
tors are not good enough. Higher quality hardware-
based random number generators rely primarily on fun-
damental noise in the silicon. Methods using metastabil-
ity of logic devices have been proposed in [9]. The
ChipLock architecture assumes these can be employed
as an RNG. The hardware key and random number gen-
erator are used for assigning keys to applications, meta-
data, and core dumps.

3.5  TrustROM 

TrustROM is an important part of our design. We
have extended the instruction set of [3] to include secure
symmetric key store, secure key load, secure key alloca-
tion, and secure key invalidation. Table 3 summarizes
the instructions. Each instruction is explained below.
The instruction Clalloc is necessary in order to allocate
key table entries in the two separate areas, which are
general processing and shared libraries. An operand
accompanies the call to Clalloc, which provides the
requested key area. The Clentr instruction is used once
the key has been allocated and the process is ready to
execute code. It uses an index for key look up. Exiting
the code execution area is done with Clexit. It is used
either in a context switch or at the completion of a pro-
cess. We have separated key and hash checking and cre-
ated instructions called Clcheck and Clhash, which
allow for finer security control. Clcheck and Clhash are
the only two instructions that will contact the verifier.
Allowing only two instructions to talk with the verifier
minimizes the ways in which it can be attacked. We
want as few instructions as possible accessing the veri-
fier because of the central role it has in legitimizing
computations.

The Clcheck instruction is used to check the validity
of the key in the key table. The Clhash instruction is
used to determine whether a given software hash
matches in the verification unit. When a hash doesn't
match, a separate event is called to handle the possible
security breach. This instruction is called Clhnmatch.
The Clinval and Clrclm instructions are used to invali-
date a key and reclaim an invalid entry in the key table,
respectively. 

In addition to protecting the code/data, we need to
protect the metadata or the keys. Following the Horton
principle of [6], we included a secure key store and a
secure key load instruction, Clsst and Clsld, respec-
tively. These are necessary because if the keys were
obtained by an intruder or otherwise malicious user,
then the integrity of the computation and its result
would be compromised. In addition to securing the key,
we also need to secure the state of the machine during a
context switch. For this task, a separate instruction
called Cldump is defined. It dumps the state for encryp-
tion to a designated area in the cryptographic unit. Once
encrypted, the cryptographic unit is responsible for
handing this information to TrustCode, the trusted por-
tion of the operating system, for temporary storage.
When that information is needed, TrustCode then moves
it back to the cryptographic unit where it is decrypted
and restored for the processor to reuse.
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TABLE 3.  Trusted Instruction Set

Encryption and decryption of the registers are han-
dled by the Clenc and Cldec instructions, respectively.
These are necessary to preserve the integrity of the bits
in the registers both during execution and when the con-
tents are being prepared to store off-chip. Separate
instructions, Clsave and Clrstr, exists for moving the
encrypted register data off-chip and for moving the data
from memory back to the register. These are important
and basically unchanged from the original design [3]. 

We have provided a means of secure communication
between ChipLock and the storage device by establish-
ing an interface between the storage device and its
microcontroller. This microcontroller is given the pro-
cessor’s symmetric key upon each key revocation. The
volatile memory between the processor and the disk is
encrypted. Therefore, the storage device's microcontrol-
ler needs the symmetric key to decrypt the data before it
is sent back to the storage device. 

Now that we have described the instructions, we will
provide two examples. The first is loading a legitimate
new process and the second is a context switch. When a
legitimate new process is executed, ChipLock super-
vises the system calls made during this process. Before
handing over control to the untrusted portion of the
operating system, a hash is made of the contents of the
memory prior to execution. Clcheck is then called to
check to see if there is a key in the key table. If not, then
Clalloc Opr is called to allocate space for one, after
which a symmetric key is issued and assigned in the

general key table for this process. Recall that the sym-
metric key is refreshed periodically. This helps guard
against a replay attack either by a malicious user or by
an impatient novice user. Clentr is then called so the
process can enter the general area for code execution. If
this process needs to use a shared library during execu-
tion, then the symmetric key from the shared library is
obtained via the Clfkey instruction. Clcheck is then
called again to verify that the symmetric key is valid
and to check if the key is located in the key table. If not,
Clalloc Opr is called to allocate an entry. 

For our second example, we will continue with the
same process which is interrupted by a context switch.
What our process has to do is encrypt and save state and
registers to memory. Therefore, Clexit is called to
remove the process from the general code execution
area. Cldump is called to dump state. Clenc is then
called to encrypt the contents and Clsave and Clsst save
both the key and state to memory. Let us now consider
what happens when this process is returning from the
context switch, Clrstr is called to retrieve the encrypted
information from memory and restore it to the registers.
Cldec is called to decrypt the contents of the registers.
The instruction Clsld is then called to load the key so
that Clcheck can check the validity of the key. Clalloc
Opr is called to allocate an entry in the key table, then
Clentr is called to start the execution of the process. The
code we have described above is placed in TrustROM
because it is compact. Again, all keys that are being
used are generated from the random number generator. 

3.6  Microprocessor

ChipLock requires the microprocessor to execute the
additional trusted instructions from the TrustROM.
When the trusted instructions are handed off to the pro-
cessor pipeline, it transitions to secure mode and issues
the appropriate control signals. For some trusted
instructions, a subroutine that exists off-chip is invoked
and executed. In order to distinguish between the new
secure mode and the regular mode, the microprocessor
requires an extra status bit in the program status register.
Extra exception entry slots should also be allocated for
security related features.

4  Evaluating the Impact of 

ChipLock

We employ two simulation modes. The first uses Sim-
pleScalar[8] with a model of the Alpha 21264 architec-
ture to study single process activity. The latency of the
cryptographic and verification units are modeled. Gen-
erally, most security transactions are sequential and hard

 Instruction Instruction Description 

Clentr enters general execution area 

Clinval invalidates key 

Clexit exit trusted code excution area

Clrclm Removes key entry in table if marked invalid 

Clcheck checks to see if key in tables is invalid 

Clsst Secure key store 

Clsld Secure key load 

Clenc Encrypt register contents for memory storage 

Clsave Saves encrypted registers to memory 

Clrstr Restore encrypted values to registers from memory 

Cldec Decrypts register contents 

Cldump Dumps state for context switches for encryption 

Clalloc Opr Allocates key table entries used for all three key hashes 

Clfkey Fetches key information 

Clinkey Installs public keys on disk

Clhash Determines whether hash matches in verification unit 

Clhnmatch Called when hash doesn't match 

Cldosat
Returns whether there is a possible denial-of-service 

attack

Cldoscount
Keeps count on number of times process has requested 

processor
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to parallelize. Therefore, we added all latencies together
for performance accounting purposes. Features of Chip-
Lock that are dependent on virtual memory were not
modeled in this mode. In particular, this mode was used
to get approximate comparisons between software and
hardware implementations.  We ran simulations of both
hardware and software implementations of the Crypto
Unit and the Verification Unit to generate comparisons.
As one would expect they confirmed that ChipLock’s
security implementations were faster than software
counterparts. Figure 2 was also generated in by this
mode.

The second simulation mode employed the M5 simu-
lator [7] to run experiments. M5 is a cycle accurate sim-
ulator intended for multi-processor and network
workloads, which made it ideal to create an environ-
ment where one wants of observe the behavior of an
operating system executing on a processor. In particular,
we could account for the effects of the interaction
between TrustROM, TrustCode, and the remaining
untrusted operating system. 

The operating system that runs on M5, and used for
our simulations, is tru64 UNIX. We modified M5 by
adding the necessary security features from our archi-
tecture. We traced the security related events that inter-
acted with ChipLock and executed ChipLock’s
components. SPEC2000 Benchmarks were used as
workloads that ran on the tru64 UNIX. We forked multi-
ple SPEC2000 processes and measured the overhead
versus the number of processes. 

TABLE 4. Configuration for experiments

Table 4 shows the configuration on our simulations. A
simple in-order Alpha processor is used to reduce exe-
cution time when running the M5 simulator. Therefore,
the effect of multiple issue and out-of-order execution is
neglected in M5. Each unit of ChipLock, described in
section 3, is modeled as a separate security component
in M5. Each unit is described in terms of size and
latency. When we execute M5, it first goes through the

booting process similar to a desktop machine. M5 has
virtual devices for full system implementation. Virtual
hardware devices are initialized, which are the hard-disk
drive and network driver. The operating system disk
image is loaded onto the simulated memory. After ini-
tialization, a script created in one of the files on the sim-
ulated hard-disk drive is executed. This script executes
additional scripts to run the SPEC2000 benchmarks.
The SPEC2000 benchmarks also exist on the simulated
hard-disk image. We ran simulations for 2, 3, 4 user
level SPEC2000 benchmark processes. We used unique
identifiers for the benchmark groups we ran. Table 5
shows the assigned names of each benchmark group. 

TABLE 5. Assigned names for benchmark groups

5  Results 

5.1  Hardware vs. Software Comparison

We use the SimpleScalar simulation environment to
compare hardware and software implementations of the

Architectural Parameters Specifications

Clock Frequency 1GHz

L1 - I, DCaches 64KB, 2-way, 32B line

L2 Caches 1MB, 4-way, 64B line

L1 latency 2 cycles

L2 latency 10 cycles

Memory latency 80 cycles

I / D TLB 4 way 128 entries

AES latency 32 cycles

SHA latency 160 cycles

Key authentication latency 1,000,000 cycles

Operating System Tru64 Alpha UNIX

Benchmark group Assigned name

bzip, crafty BC2

crafty, eon CE2

eon, gap EG2

gap, gcc GG2A

gcc,gzip GG2B

gzip,mcf GM2

mcf,parser MP2

parser,perlbmk PP2

perlbmk,twolf PT2

twolf, vortex TV2

vortex, vpr VV2

bzip, crafty, eon BCE3

crafty, eon, gap CEG3

eon, gap, gcc EGG3

gap, gcc, gzip GGG3

gcc, gzip,mcf GGM3

gzip,mcf, parser GMP3

mcf, parser, perlbmk MPP3

parser, perlbmk, twolf PPT3

perlbmk, twolf, vortex PTV3

twolf, vortex, vpr TVV3

bzip, crafty, eon, gap BCEG4

crafty, eon, gap, gcc CEGG4

eon, gap, gcc, gzip EGGG4

gap, gcc, gzip, mcf GGGM4

gcc, gzip,mcf, parser GGMP4

gzip, mcf, parser, perlbmk GMPP4

mcf, parser, perlbmk, twolf MPPT4

parser, perlbmk, twolf, vortex PPTV4

perlbmk, twolf, vortex, vpr PTVV4
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Crypto Unit and the Verification Unit. Figures 4 and 5
shows the run time ratios for the spec2000 benchmarks.
As expected software implementations are considerably
slower. This trend will be even more pronounced for
high-end  out-of-order microprocessors due to the lack
of parallelism in cryptographic and verification algo-
rithms.

5.2  Verification Unit & Crypto Overhead

To study the verification and crypto overhead we
employ the M5 simulation environment. For the verifi-
cation unit we reduce overhead and latency by assuming
that any writeback or update to hash values can be
queued. Verification is initially done for all L2 cache
misses. Figure 6 breaks out the overhead for ChipLock
running in a full system. Typically, an L2 cache miss
rate for SPEC2000 benchmarks is very small (less than
1%), however the long latencies required by verification
can still cause the processor to spend a significant
amount of execution time on verification. Fortunately,
the latency can be hidden if infrequent verification
occurs (infrequent L2 misses) or verification is done in
parallel with cache miss events. Accurate prefetches
may also hide the latency [15]. However, prefetching
when frequent concurrent L2 cache misses occurs may

not help reduce latency. 

The Crypto Unit is also a major contributor to over-
head. For our simulations, we again assumed that
encryption writebacks are queued so that their latency is
zero. The Crypto Unit is accessed along with the Verifi-

cation Unit. However, unlike verification, reducing the
frequency is not admissible for the Crypto Unit. Chip-
Lock cannot selectively decrypt incoming code and/or
data. Therefore, a fast response to an L2 cache read miss
would be unmistakable. The only exception would be to
create a faster cryptographic engine. Prefetching would
also become a important factor in decrypting incoming
cache blocks [15]. 

5.3  Key Management Overhead

When applications are loaded into the external mem-
ory, symmetric keys are assigned to protect the data. For
system calls that are related to memory mapping, Chip-
Lock intercepts these calls and executes the trusted
instructions, assigning keys and storing them in the Key
Manager. Figure 7 shows the key table miss rate for var-
ious benchmarks. The key table miss rate is not as sig-
nificant, in terms of overhead, as the L2 cache miss rate.
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Figure 4. hardware vs. software AES
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Figure 6. Breakdown of overhead
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This also applies to various architectural events, since
spatial locality is maintained for a lengthy period of
time. We measured various key assignments, such as per
contiguous memory, per library, and metadata. Figure 8
shows, in general, that even with a fine grain assign-
ment, key management is not a main contributor to
overhead. Keys are assigned to processes, temporary
context machine states, shared libraries, and separate
memory maps as shown in the right-most bar of Figure
7. We see a minimal increase in terms of overall misses.
Recalling that ChipLock does key allocation and checks
for L2 cache misses, and system calls, this shows that
potentially more processor cycles could be used in key
management. Furthermore, in terms of overall execu-
tion time, the contribution of key management is not sig-
nificant compared to that of the Verification and Crypto

Units.

5.4  Putting it all Together

Figure 6 shows the break down of execution overhead
for our benchmarks. Most of the security related execu-
tions are sequential and hard to parallelize due to the
security protocol we follow. This implies that the Verifi-
cation and the Crypto Unit play a significant role in con-
tributing to the overhead of the system. We can also
conclude that this overhead would have more of an
impact on multi-issue out-of-order machines. Looking
at the overall impact of key management, assuming the

latency to be 1,000,000 cycles as shown in Table 4, we
see that the execution time of key management is small
when compared to its latency. Comparing the bench-
marks, we can see a significant increase in verification
time for benchmark groups that have a high L2 cache
miss latency. In some cases, the verification time takes
approximately 25% of the overall execution time.
Another trend we observe from Figure 6, is the increase
in overhead as the number of processes for security
related functions increase. We can clearly see an
increase in the verification time on MPP3 compared to
MP2 resulting in the increase of processes sharing an L2
cache. Additional misses are incurred thereby increas-
ing verification and decryption. 

6  Conclusion

We have proposed hardware support for security in a
microprocessor with on-chip cache called ChipLock that
provides confidentiality and integrity.  The salient con-
cepts from a verified security protocol, SSL, were used
to design ChipLock and ensure security.  An efficient
Key Manager was implemented in hardware which
maintained symmetric keys with fine granularity.
Assigning unique keys while maintaining dynamic key
management is an important feature in ChipLock.
Trusted instructions were added to the conventional
instruction set. These are necessary to maintaining secu-
rity when there are transactions between the mostly
untrusted operating system and the trusted architecture.
They interact with the small trusted portion of the oper-
ating system. We have simulated each component of our
security system on M5, evaluated various instances of
our benchmarks, and measured the impact on chip area
and performance. We have shown from the results that
some overhead is associated with these added security
features. We have also suggested prefetch techniques to
reduce performance degradation. We have noted that
certain tradeoffs must be made in order to maintain a
certain level of security.
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