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Abstract—On-chip caches represent a sizable fraction of the
total power consumption of microprocessors. As feature sizes
shrink, the dominant component of this power consumption will
be leakage. However, during a fixed period of time, the activity
in a data cache is only centered on a small subset of the lines.
This behavior can be exploited to cut the leakage power of large
data caches by putting the cold cache lines into a state preserving,
low-power drowsey mode. In this paper, we investigate policies
and circuit techniques for implementing drowsy data caches.
We show that with simple microarchitectural techniques, about
80%–90% of the data cache lines can be maintained in a drowsy
state without affecting performance by more than 0.6%, even
though moving lines into and out of a drowsy state incurs a
slight performance loss. According to our projections, in a 70-nm
complementary metal–oxide–semiconductor process, drowsy data
caches will be able to reduce the total leakage energy consumed in
the caches by 60%–75%. In addition, we extend the drowsy cache
concept to reduce leakage power of instruction caches without
significant impact on execution time. Our results show that data
and instruction caches require different control strategies for
efficient execution. In order to enable drowsy instruction caches,
we propose a technique called cache subbank prediction, which
is used to selectively wake up only the necessary parts of the
instruction cache, while allowing most of the cache to stay in
a low-leakage drowsy mode. This prediction technique reduces
the negative performance impact by 78% compared with the
no-prediction policy. Our technique works well even with small
predictor sizes and enables a 75% reduction of leakage energy in
a 32-kB instruction cache.

Index Terms—Dynamic voltage scaling, L1 caches, low power,
subthreshold leakage power.

I. INTRODUCTION

H ISTORICALLY, one of the advantages of complementary
metal–oxide–semiconductor (CMOS) over competing

technologies, such as transistor-transistor logic (TTL) and
emitter coupled logic (ECL), has been its lower power dissi-
pation. When not switching, CMOS transistors have, in the
past, dissipated negligible amounts of power. However, as
the feature size of these devices has decreased, so has their
subthreshold leakage (static) power dissipation. As processor
technology moves below 0.1 m, static power dissipation
is set to dominate the total power used by digital circuits.
Furthermore, subthreshold leakage presents an interesting
tradeoff. On one hand, performance demands require the
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use of fast high-leakage transistors; on the other hand, new
applications and cost issues favor designs that are energy
efficient. Fig. 1 illustrates the magnitude of the problem with
data from existing technologies and projections based on the
international technology roadmap for semiconductor (ITRS)
[1]. As it can be seen, even in current-generation technology,
subthreshold leakage power dissipation is comparable to the
dynamic power dissipation, and the fraction of the leakage
power will increase significantly in the near future. In fact, the
off-state subthreshold leakage component of the total power in
a microprocessor may exceed active power as the technology
decreases below the 65 nm technology node, according to a
projection from Intel [2].

Subthreshold leakage is a problem for all transistors, but
it is a particularly important problem in on-chip caches,
because they are a growing fraction of the total number of
microprocessor devices. For instance, 30% of Alpha 21 264
and 60% of StrongARM are devoted to cache and memory
structure [3]. Furthermore, the leakage power is becoming the
dominant fraction of total cache power consumption because
of a very high number of storage cells (cross-coupled inverters)
of on-chip caches where there is no stacking effect [4] reducing
the leakage current. We project that in a 70-nm CMOS process,
leakage will amount to more than 60% of power consumed
in L1 caches if left unchecked. However, most data in caches
is accessed relatively infrequently due to either temporal or
spatial locality, thus, as the cost of storing data increases in
the form of leakage power, the contribution of dynamic power
dissipation diminishes. To alleviate this problem, transistors
in caches could be statically designed such that they have less
leakage, for example, by assigning them a higher threshold
voltage [5]. However, computer architects would like to have
the best of all worlds: large cache; fast access time; and low
power consumption. We believe that it is possible to reconcile
these aims by taking advantage of the runtime characteristics
of workloads and by attacking the problem at both the circuit
and microarchitecture levels. In particular, significant leakage
reduction can also be achieved by putting infrequently accessed
cache lines into a low-power standby or drowsy mode.

In this paper, we propose a simple but effective circuit tech-
nique for implementing caches that have a drowsy mode, where
one can choose between two different supply voltages for each
cache line. Such a dynamic voltage scaling (DVS) technique
has been used in the past to trade off dynamic power consump-
tion and performance [6], [7]. In this case, however, we exploit
the voltage scaling technique to reduce leakage power dissipa-
tion. Due to short-channel effects in deep-submicron CMOS
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Fig. 1. Normalized dynamic and static power dissipation for (W/Lgate =3 device. Data is based on the ITRS [1] and normalized to the year 2001’s figures.

processes, leakage current reduces substantially with voltage
scaling [8]. The combined effect of reduced leakage current and
voltage yields a drastic reduction in leakage power. In a reg-
ular cache, all lines leak at a high rate, but in the drowsy cache,
the high leakage component is only incurred when the lines are
awake or active. The key is to arrange things so that these ac-
tive lines are the ones that are accessed. Although leakage is not
zero in the drowsy mode, it provides more than a 10 reduction
(depending on design) over the regular high-leakage mode (see
Section III-A for an analysis). While voltage scaling does not
reduce leakage as much as the gated- technique appearing
in [9] and [10], it has the crucial advantage of being able to pre-
serve the state of the transistors.

The rest of the paper is organized as follows. In Section II,
previously proposed circuit and microarchitectural techniques
to reduce the leakage power of static random-access memory
(SRAM) will be reviewed. In Section III, we will present a new
6T-SRAM circuit that uses DVS to reduce the subthreshold
leakage power while preserving memory states. With the
proposed circuit technique, we propose simple but effective
microarchitectural control mechanisms that reduce the leakage
power for L1 data and instruction caches. First, we focus on
the policy implications of using drowsy data caches, evaluating
the design tradeoffs between simple policies in Section IV.
We argue that the simplest policy of periodically putting the
entire data cache lines into drowsy mode does about as well as
a policy that tracks access to cache lines. Second, in Section V,
we concentrate on a drowsy instruction cache architecture and
its performance implications of waking up and precharging
a specific subbank on demand. We note that the on-demand
wake up and precharge of the currently accessed subbank may
degrade the performance significantly, due to the intermittent
transitions among the subbanks. To reduce the performance
impact of the subbank transitions, we propose two subbank pre-
diction techniques and examine their performance implications.
In Section VI, we present simulation models and experiment

results for the proposed cache architectures. Section VII
concludes and suggests directions for future research.

II. BACKGROUND WORK

A. Circuit and Device Techniques

In [11], a multithreshold CMOS (MTCMOS) circuit
technique was proposed to satisfy both the requirement of
lowering the threshold voltage of metal–oxide–semiconductor
field-effect transistors (MOSFETs) and reducing standby or
subthreshold leakage current. To increase operating speed,
low- MOSFETs were used for logic gates, and during
the long standby time (i.e., sleep time), the power supply was
disconnected with high- MOSFETs. This concept was
also applied in a prototype design of MTCMOS memories
to reduce the power dissipation of peripheral circuits such
as row decoders and input/output (I/O) circuitry [12], [13].
However, the MTCMOS technique cannot be applied to the
memory cell array, because the sleep control transistors in the
MTCMOS technique cut the power supply off, destroying the
states of memory cells. Instead, to suppress the leakage power
dissipation of the memory cell array, high- MOSFETs
are used, which increases the overall memory access time. In
[14], adaptive reverse body biasing (ABB) MTCMOS was
proposed to control the leakage current of SRAM cells during
standby mode. In general, the subthreshold leakage current
decreases exponentially as increases, and the adaptive
body biasing technique has the advantage that it reduces the
leakage current exponentially by increasing . Although the
SRAM designed with the ABB MTCMOS technique reduces a
substantial amount of the leakage power, the transition between
the active and sleep modes is very slow because the wake-up
transistors have to drive large substrate capacitances.

Several dual-threshold voltage CMOS techniques for leakage
power reduction have been investigated [15], [16]. The basic
concept of dual-threshold voltage CMOS techniques is to
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use low- for circuits in the critical path, and to employ
high- transistors for the rest of the circuits to suppress
unnecessary leakage current. In SRAM design, low-
transistors have been used in the peripheral circuits of caches
with high- transistors for the memory cells. In [5], different
cache designs with dual- were investigated in a 130-nm
technology. Among other design choices, they showed that a
SRAM cell using all high- transistors increased the access
time of memory by up to 26% compared with that of a memory
design with low- devices [5].

The gated- structure was introduced in [9] and [10]. This
technique reduces the leakage power by using a high- tran-
sistor between (a virtual ground) and (the ground) to
cut off the power supply of the memory cell when the cell is set
to low-power mode. This high- gating transistor dramati-
cally reduces the leakage of the circuit, due to the stacking effect
[4] and the exponential dependence of leakage on the of
the gating transistor. While this method is very effective at sup-
pressing leakage, its main disadvantage lies in that it loses any
information stored in the cell when switched into low-leakage
mode. This means that a significant performance penalty may
be incurred when data in the cell is accessed and more complex
and conservative cache policies must be employed. Also, the
stacked transistor that reduces the leakage current is in the crit-
ical path, which results in increased access time of the memory.
A single- data-retention gated-ground (DRG) SRAM was
proposed in [17]. This technique relies solely on the forced-
stacking effect to reduce the leakage current. To retain the cell
state, this technique requires sophisticated transistor sizing and
is sensitive to noise during sleep time. For a processor with

mV, this technique reduces leakage power by 40%
while increasing read time by 4.4%, compared with the conven-
tional SRAM. In comparison, the gated- technique without
data-retention capability reduces the leakage power by 97%,
while increasing read time by 8% and area by 5% using 0.2 V
and 0.4 V for low- and high- ’s, respectively.

Recently, several other SRAM cell-design techniques to re-
duce the leakage power were proposed [18]–[20]. All these cir-
cuit techniques rely on the microarchitectural dynamic charac-
teristics of the workloads such as the bits being highly biased to
state “0” [18], [19] or the bits in the branch predictor or branch
target buffer (BTB) being transient and predictive [20]. In [18],
high- transistors were asymmetrically used in an SRAM
cell for the selected biased state. To compensate for the slow
access time in the biased state, a special sense-amplifier cir-
cuit was also proposed, which requires two more transistors per
sense-amplifier. To suppress the leakage current from bit lines
through the access transistors of SRAM cells, a leakage-biased
bit-line architecture was proposed with dual- storage cells
in [19]. In this technique, the bit lines in inactive subbanks are
floated, which makes the leakage currents from the bit cells au-
tomatically bias the bit line to a mid-rail voltage that minimizes
the bit line leakage current through the access transistors. The
leakage reduction of this technique depends on the percentage of
zero or one resident bits in caches. Finally, in [20], a quasi-static
4T SRAM cell was proposed for the transient and predictive bits
in the memory structure for the branch prediction. The 4T cells
are about as fast as 6T cells, but they do not store charge in-

definitely due to leakage. This technique can be applied only to
structures used for speculative operations which do not affect
the correctness of the execution of programs.

B. Microarchitectural and Compiler Techniques

Most microarchitectural and compiler leakage suppression
techniques are combined with the circuit techniques mentioned
in Section II-A. In [9] and [10], dynamically resizable cache
architectures were proposed. The key observation behind these
techniques is that there is a large variability in instruction cache
utilization, both within and across programs leading to large
energy inefficiency in conventional caches. To take advantage
of this observation, these approaches resize caches to increase
or decrease the number of unused sets in the caches by turning
on or off high- nMOS gating transistor between and

using the circuit technique proposed in [9]. The authors
assumed that the states of the cache cells are lost when the gating
transistor is turned off. The technique requires extra hardware for
estimatingcachemiss ratesandresizingfactors.Thedynamically
resizing cache also requires its tag bits to be compatible with
both small and large caches. Furthermore, resizing caches may
require data remapping on the fly, and thus, incur compulsory
misses whenever resizing occurs. It was reported that resizing
the cache on the fly can lead to large performance penalties in
some applications [17]. The approaches proposed in [21] exploit
generational behavior of caches to reduce the leakage power. It
turns off a “dead” cache line if a preset number of cycles have
elapsed since its last access. To turn off cache lines selectively, it
also uses the same circuit technique proposed in [9]. This tech-
nique incurs a cache-miss penalty like the techniques proposed
in [9] and [10] when the turned off cache lines are required to be
accessed. Adaptive techniques to determine the dead cache lines
were also proposed to reduce the cache-miss penalty.

In [22], a compiler-based leakage optimization strategy for
instruction caches was introduced. This approach is based on
determining the last use of an instruction at the granularity of a
loop. Once the last use of the instructions is detected at the loop
exit, the corresponding cache lines in the loop are either turned
off or switched to the state-preserving sleep state, assuming that
the loop will not be revisited in the near future. To turn off or
switch specific cache lines to sleep mode using the circuit pro-
posed in [23] and [24], a cache-line mode-control instruction
was also proposed.

III. DVS FOR SRAM LEAKAGE POWER REDUCTION

The method proposed in this paper utilizes DVS to reduce
the leakage power of SRAM cells. In active mode, the standard
supply voltage is provided to the SRAM cells. However, when
cells are not intended to be accessed for a time period, they are
placed in a sleep or “drowsy” mode by supplying a standby
voltage in the range of 200–300 mV to the SRAM cells. In
drowsy mode, the leakage power is significantly reduced due to
the decreases in both leakage current and supply voltage. Supply
voltage reduction is especially effective for leakage power re-
duction due to short-channel effects, such as drain-induced bar-
rier lowering (DIBL), which results in a superlinear dependence
of leakage current on the supply voltage [8]. To understand the
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Fig. 2. Leakage inside a SRAM cell.

leakage power reduction achievable in the drowsy mode, we
present in this section a subthreshold leakage current analysis
of SRAM cells, and a leakage power reduction technique using
DVS. Also, we discuss other issues such as wake-up latency and
crosstalk noise stability of the proposed technique.

A. SRAM Leakage Power Reduction Using DVS

Basically, there are two off-state leakage current paths
through the two cross-coupled inverters in the standard SRAM
cell, as shown in Fig. 2. The off-state leakage current is
dominated by the weak inversion current in the next-generation
70-nm technology, which can be modeled as [25], [26]

(1)
where is a parameter modeling the pseudosaturation region in
weak inversion. Since the on transistors are in a strong inver-
sion region and only present a small serial resistance that can be
ignored, the overall leakage current is the sum of leakage cur-
rents from the off transistors in the cross-coupled inverters. The
overall leakage of the SRAM cell is, therefore, modeled as fol-
lows:

(2)

where and are nMOS and pMOS off-transistor current
factors that are independent of in (1).

From (2), it is clear that the leakage current reduces super-
linearly with , and hence, significant reduction in leakage
power can be obtained in drowsy mode. In drowsy mode, a min-
imum voltage must be applied to maintain state. In our imple-
mentation, assuming that the threshold voltage of 70-nm tech-
nology is mV, we set the state-preserving or data-reten-
tion voltage 50% higher than the threshold voltage. It was found
that, despite process variations, this state-preserving voltage is
quite conservative, and that the state-preserving supply voltage
can be even reduced further if necessary [27].

In Fig. 3(a) we illustrate a proposed drowsy SRAM cell with
the supply voltage control mechanism. The two pMOS transis-
tors, P1 and P2, control the supply voltage of the memory cell
based on the operating mode: active or standby mode. When the
cell is in the active mode, P1 supplies a standard supply voltage
(1 V), and P2 supplies a standby voltage mV) when it is

Fig. 3. A drowsy SRAM cell with (a) the supply voltage control mechanism
and (b) the subthreshold leakage power reduction of the SRAM cell with DVS.

in the drowsy mode. P1 and P2 are controlled by complemen-
tary supply voltage control signals. In drowsy mode, however,
SRAM cell accesses are not allowed, because the bit line voltage
is higher than the storage cell core voltage, which may result in
destroying the cell state. Moreover, the sense-amplifier may not
operate properly at the low storage cell core voltage, because
the memory cell does not have enough driving capability to sink
the charge stored in the bit lines. When we build a cache system
for a microprocessor with a drowsy SRAM circuit technique,
we can apply it to either each cache-line or on a subbank basis,
depending on the microarchitectural control mechanism; each
cache line or subbank shares the same virtual supply voltage
node .

In Fig. 3(b), we show the subthreshold leakage power reduc-
tion trend of 4T storage and 6T SRAM cells with the 70-nm
technology as we scale the supply voltage down. According
to our HSPICE measurements, 4T and 6T SRAM cells dissi-
pate about 65 nW and 78 nW, respectively, at 1 V standard
supply voltage. We can reduce the leakage power of the 4T and
6T SRAM cells by 92% and 77% at 300 mV standby supply
voltage. We initially ignore the bit line leakage through the ac-
cess transistors, although in a 6T SRAM cell, the leakage power
dissipation through the access transistors is responsible for ap-
proximately 20% of the total leakage power of the active mode.
However, in Sections IV-A and V-A, we will address how this
leakage can be controlled by either assigning a high threshold
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TABLE I
SUPPLY VOLTAGE RAIL INTERCONNECT PARAMETERS

The estimated height and width of the SRAM cell is 1.42 �m by 0.72 �m, respectively, in 70-nm technology.

TABLE II
WAKE-UP LATENCIES AND ENERGY OF EACH SIZE OF THE VOLTAGE CONTROLLERS

L is equivalent to 2 � and the number in the parenthesis in normalized to 12 � FO4 delay.

voltage to the access transistors or gating the precharge signals
of memory subbanks.

B. Wake-Up Latency and Crosstalk Noise Stability

When the SRAM cells are in standby or drowsy mode, it takes
a finite amount of time to restore the voltage level of the
node from standby to standard supply voltage level, which we
refer to as “wake-up” latency. To estimate the wake-up latency,
we connected 128 SRAM cells to a voltage controller. We also
model the interconnect capacitance and resistance according
to the estimated supply voltage line length and width based
on 70-nm technology [28]. To estimate the 70-nm technology
SRAM cell dimension, we applied a linear scaling to the Artisan
180-nm technology memory cell. Table I shows the detailed
power supply wire parameters for the HSPICE experiments, and
the wire capacitance and resistance are obtained from [28] with
the given wire dimensions. To estimate the number of cycles for
restoring the supply voltage level of node, we need to
estimate the clock frequency of a typical microprocessor. Ac-
cording to [29], the clock frequency has been around 16 FO4
(fan-out of four gate delay). This corresponds to 527ps in the
70-nm technology, and the frequency will approach 12 FO4
in future technology. Table II shows the wake-up latency and
energy estimated for each size of the voltage controller transis-
tors (see Fig. 4(a) for the HSPICE wake-up latency simulation
waveforms) as the width of the P1 transistor is increased. We de-
fined the rise time of VVDD from 0.25 to 0.99 V as a wake-up
latency. The latency number in the parentheses is normalized to
12 FO4. The energy number in Table II includes the dissi-
pation by the circuitry driving the voltage controller transistor.
The normalized numbers of cycles in Table II are a conservative
estimation. When we use 32 and 64 -size voltage con-
trollers, we can restore the full supply voltage level of
node in two or one cycles, respectively. However, the voltage
controller for supplying standby voltage does not need to use
such a wide pMOS transistor (e.g., 64 size), because the
latency from active to drowsy mode is not critical for the pro-

(a)

(b)

Fig. 4. Wake-up delay for (a) the V V node and (b) the crosstalk noise
stability of a drowsy cell.

cessor performance. Thus, we can use a minimum-size pMOS
transistor [P2 in Fig. 3(a)] that provides enough current for sus-
taining the standby voltage of cache lines.
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Fig. 5. An implementation of a cache line for drowsy data caches. Note that, for simplicity, the word line, bit lines, and two pass transistors in the drowsy bit are
not shown in this figure.

To estimate the area overhead of the voltage controllers,
we drew the actual layout using TSMC 0.18 m technology,
which was the smallest feature size available to the aca-
demic community at the time of writing. The dimensions
of the memory cell from the memory compiler were 3.66

m 40 1.84 20 m, and those for the voltage
controllers were 3.66 m 40 1.98 m 22 and 3.66

m (40 3.42 m (38 for 32 and 64 size
voltage controllers, respectively. We estimate the extra area
by the voltage controller per 128-bit cache line is equivalent
to 1.1 (0.87%) and 1.9 (1.48%) extra memory cells for the
32 and the 64 voltage controller, respectively. This
relatively low area overhead can be achieved because of the
negligible amount of the interconnect in the voltage controller
compared with that of SRAM cell; a significant amount of a 6T
SRAM cell area is consumed by local interconnects although
the effective size of each transistor is small.

As we decrease the supply voltage further, we can suppress
more leakage power. However, the stability of drowsy cells
in the presence of crosstalk noise can be a problem, because
scaling supply voltage down reduces the charge stored in the
drowsy nodes. Assuming that row is in drowsy mode and an
adjacent row is in awake mode, we examined the crosstalk
noise stability of the drowsy cells in row by applying a write
operation to the awake row . This makes all the bit lines
connected to both drowsy and active cells swing rail-to-rail.
According to the HSPICE simulation shown in Fig. 4(b), there
is only a slight voltage fluctuation at the drowsy node during
the write operation to the awake row, while the voltage level
of the drowsy cells recovers its standby voltage level quickly,
because the cross-coupled inverters in the drowsy cell continue
driving its internal nodes.

IV. DROWSY DATA CACHES

A. Cache-Line Architecture Using DVS

Fig. 5 shows the changes necessary for implementing a cache
line that supports a drowsy mode. There are very few additions
required to a standard cache line. The main ones are a drowsy

bit, a mechanism for controlling the voltage to the memory cells,
and a word-line gating circuit. In order to support the drowsy
mode, the cache-line circuit includes the voltage controller il-
lustrated in Section III, which switches the cache-line voltage
between the standard (active) and standby (drowsy) supply volt-
ages depending on the state of the drowsy bit. If a drowsy cache
line is accessed, the drowsy bit is cleared, and consequently the
supply voltage is switched to high . The word-line gating
circuit is used to prevent access of the cache line when it is in
drowsy mode, because the supply voltage of the drowsy cache
line is lower than the bit line precharge voltage; unchecked ac-
cess to a drowsy line might destroy the memory states.

Whenever a cache line is accessed, the cache controller mon-
itors the condition of the voltage of the cache line by reading
the drowsy bit. If the accessed line is in standard supply-voltage
mode, we can read out the contents of the cache line without
loss of performance. No performance penalty is incurred, be-
cause the power mode of the line can be checked by reading
the drowsy bit, concurrently with the read out and comparison
of the tag. However, if the memory array is in drowsy mode,
we need to prevent the discharge of the bit lines of the memory
array because it may read out incorrect data. The line is woken
up automatically during the next cycle, and the data can be read
out during consecutive cycles.

Fig. 6(a) illustrates a SRAM cell architecture for drowsy data
caches. There is an additional leakage current path through one
of the access transistors depending on the cell state in the 6T
SRAM cell. When we use low- (200 mV) access transis-
tors, the total leakage power reduction is limited to 77% at 300
mV drowsy supply voltage level, due to the access transistor
leakage current. To further reduce the leakage power of the 6T
SRAM cell, high- transistors can be optionally used for the
access transistors that connect the 4T cross-coupled inverters of
storage cells to bit lines ( and ) in the 6T SRAM cell.
However, using high- access transistors will increase the
access time of the memory or require wider and transis-
tors to compensate for the increased access time. According to
the HSPICE simulation shown in Fig. 6(b), we can reduce the
leakage power of the 6T SRAM cell by 91% by adjusting the
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(a)

(b)

Fig. 6. A SRAM architecture for (a) a drowsy data cache line and (b) the
tradeoff between the leakage power reduction and access time increase when
high-V access transistors are used. The arrows in (a) are possible leakage
current paths in the SRAM cell, and a high-V can be used for N1 and N2

transistors to reduce the leakage power dissipation through the access transistors
(optional).

threshold voltage of the access transistors to 300 mV, which in-
creases the access time of the memory by 6%. As explained
further in Section V-A, it should be noted that if the drowsy
cache approach is used on a subbank basis, the supply voltage
of all bit lines can be floated in drowsy mode, similar to that of
the bit cell supply voltage, thereby making it unnecessary to use
high- access transistors.

B. Cache Management Policies

The key difference between drowsy caches and caches that
use gated- is that in drowsy caches, the cost of being
wrong—putting a line into drowsy mode that is accessed soon
thereafter—is relatively small. The only penalty one must
contend with is an additional delay and energy cost for having

to wake up a drowsy line. One of the simplest policies that one
might consider is that all lines in the cache, regardless of access
patterns, are put into drowsy mode periodically and a line is
woken up only when it is accessed again. This policy requires
only a single global counter and no per-line statistics. Table III
shows the working set characteristics of some of our workloads
using a 2000-cycle update window, meaning that all cache lines
are put into drowsy mode every 2000 cycles. Observations of
cache activity are made over this same period. Based on this
information, we can estimate how effective this simple policy
could be.

The results show that on most of the benchmarks the working
set (the fraction of unique cache lines accessed during an update
window) is relatively small. On most benchmarks, more than
90% of the lines can be in drowsy mode at any one time. This
has the potential to significantly reduce the static power con-
sumption of the cache. The downside of the approach is that the
wake-up cost has to be amortized over a relatively small number
of accesses: between 7 (crafty) and 21 (equake), depending on
the benchmark. See (3) at the bottom of the page.

Equation (3) shows the formula for computing the expected
worst-case execution time increase for the baseline algorithm.
All variables except memory impact and wake-up latency are
directly from Table III. The term memory impact can be used
to describe how much impact a single memory access has on
overall performance. The simplifying assumption is that any in-
crease in cache access latency translates directly into increased
execution time, in which case, memory impact is set to 1. Using
this formula and assuming a one-cycle wake-up latency, we get
a maximum of 9% performance degradation for crafty and under
4% for equake. One can further refine the model by coming up
with a more accurate value for memory impact. Its value is a
function of both the microarchitecture and the workload.

• The workload determines the ratio of the number of
memory accesses to instructions.

• The microarchitecture determines what fraction of
wake-up transitions can be hidden, i.e., not translated into
global performance degradation.

• The microarchitecture also has a significant bearing on
IPC, which, in turn, determines the number of memory
accesses per cycle.

Assuming that half of the wake-up latencies can be hidden by
the microarchitecture, and based on a ratio of 0.63 of memory
accesses per cycle, the prediction for worst-case performance
impact for the crafty benchmark reduces to 2.8%. Similarly,
using the figure of 0.76 memory accesses per cycle and the same
fraction of hidden wake-up transitions, we get a performance
impact of about 1.4%. The actual impact of the baseline tech-
nique is likely to be significantly lower than the results from
the analytical model, but nonetheless, these results show that
there is no need to look for prediction techniques to control the

Execution factor
accesses wake-up latency memory impact

access per line window size accesses

window size
(3)
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TABLE III
WORKING SET AND REUSE CHARACTERISTICS

TABLE IV
LATENCIES OF ACCESSING LINES IN THE DROWSY CACHE

Note that we use one cycle for the cache access and wake-up latencies.

drowsy cache. As long as the drowsy cache can transition be-
tween drowsy and awake modes relatively quickly, simple algo-
rithms should suffice.

The right side of Table III contains information about how
quickly the working set of the workloads are changing. The re-
sults in the table specify what fraction of references in a window
are to lines that had been accessed 1, 8, or 32 windows before.
This information can be used to gauge the applicability of con-
trol policies that predict the working set of applications based
on past accesses. As it can be seen, on many benchmarks (e.g.,
bzip and gcc), a significant fraction of lines are not accessed
again in a successive drowsy window, which implies that past
accesses are not always a good indication of future use. Aside
from the equake and mesa benchmarks, where past accesses do
correlate well with future accesses, most benchmarks only reac-
cess 40%–60% of the lines between windows. The implications
of this observation are twofold. If an algorithm keeps track of
which cache lines are accessed in a window, and only puts the
ones into drowsy mode that have not been accessed in a certain
number of past windows, then the number of awake to drowsy
transitions per window can be reduced by about 50%. This, in
turn, decreases the number of later wake ups, which reduces the
impact on execution time. However, the impact on energy sav-
ings is negative because a larger fraction of lines are kept in full

power mode, and in fact, many of those lines will not be ac-
cessed for the next several windows, if at all.

Table IV shows the latencies associated with the different
modes of operation. No extra latencies are involved when an
active line is accessed. Hits and misses are determined the same
way as in normal caches for the active cache lines. However, a
hit for the drowsy cache line costs one extra cycle to wake up
the line, although this wake-up penalty may be overlapped with
the upper memory such as L2 or main memory-access latency.

C. Policy Evaluation

In this section, we evaluate the different policy configurations
with respect to their impact on runtime and the fraction of cache
lines that are in drowsy mode during the execution of SPEC2000
benchmarks. All our algorithms work by periodically evaluating
the contents of the cache and selectively putting cache lines into
drowsy mode. The following parameters can be varied.

• Update window size: specifies in cycles how frequently
decisions are made about which cache lines are put into
drowsy mode.

• Wake-up latency: the number of cycles for waking up
drowsy cache lines. We consider one, two, or four-cycle
transition times, since our circuit simulations indicate that
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Fig. 7. Impact of window size on the runtime and fraction of drowsy lines. We
use a simple policy with 128 K, 32 K, 8 K, 2 K, and 512 update window sizes
and one-cycle drowsy line wake-up latency.

these are reasonable assumptions, with four cycles being
a conservation extreme.

• Simple or Noaccess policy: The policy that uses no
per-line access history is referred to as the simple policy.
In this case, all lines in the cache are put into drowsy
mode periodically (the period is the window size). The
noaccess policy means that only lines that have not been
accessed in a window are put into drowsy mode.

The detailed simulation methodology and processor parameters
are discussed in Section VI-A.

Fig. 7 shows how the update window size impacts the runtime
and the fraction of drowsy lines using a simple policy with a one-
cycle wake-up latency. For clarity, we are showing only a subset
of the benchmark. As we decrease the update window size, we
have larger fractions of drowsy lines, which implies that we are
able to reduce more leakage power dissipation. However, this
comes along with the runtime increases of the workloads. Also,
at the same update window size, the floating-point benchmarks
show less runtime increase compared with the integer ones, be-
cause the floating-point applications have more temporal lo-
cality, accessing a specific region of data cache more frequently
than other regions of the cache according to our experimental re-
sults. On the give processor configuration; the sweetspot, where

Fig. 8. Impact of increased drowsy access latencies. We use a simple with one-,
two-, and four-cycle drowsy line wakeup latencies and 128 K, 32 K, 8 K, 2 K,
and 512 update window sizes.

the energy-delay product is maximized, is around 2 K cycles in
the simple policy with the one-cycle wake-up latency.

From the entire SPEC2000 benchmarks, the average frac-
tions of drowsy lines are 97%, 93%, 83%, 64%, and 39%,
while the average runtime increases are 0.76%, 0.62%, 0.52%,
0.39%, and 0.15% for 512, 2 K, 8 K, 32 K, and 128 K update
window sizes. The reason for the relatively small impact of
the drowsy wake-up penalty on the processor’s performance
is due to our use of a nonblocking memory system, which
can handle a number of outstanding loads and stores while
continuing execution of independent instructions. Moreover,
the drowsy wake-up penalty is usually only incurred with load
instructions, because stores are put into a write buffer, which,
if not full, allows execution to continue without having to
wait for the completion of the store instruction. In terms of
the average leakage power reduction, roughly 85% of leakage
power can be reduced with a 0.62% runtime increase when the
average fraction of drowsy lines are 93% and a drowsy cache
line consumes 10% leakage power of an awake line.

The impact of increased wake-up latencies is shown in Fig. 8;
the graphs in the figures show the runtime increases of the pro-
cessor using a simple policy with one-, two-, and four-cycle
wake-up latencies and 512, 2 K, 8 K, 32 K, and 128 K update



176 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 2, FEBRUARY 2004

window sizes. According to the experimental results, the frac-
tion of drowsy lines remains relatively constant, but the runtime
is increased significantly as the wake-up latency is increased,
because the extra number of wake-up cycles increases idle cy-
cles in the processor pipeline. For the 512, 2 K, 8 K, 32 K, and
128 K update window sizes, the average runtime increases of the
simple policy with the two-cycle (four-cycle) wake-up latency
are 1.6% (3.2%), 1.3% (2.6%), 1.1% (2.2%), 0.8% (1.6%), and
0.3% (0.7%), respectively; the impact on the runtime is dou-
bled as the wake-up latency is doubled, and the runtime in-
crease trend is consistent with the results of one-, two-, and
four-cycle wake-up latencies. To minimize the runtime impact
by the wake-up penalty, it is necessary to use a voltage controller
that wakes up the drowsy cache line as fast as possible, but this
increases the area overhead as well as dynamic power dissipa-
tion of the voltage controller (see Section III-B for the wake-up
latency versus voltage controller size). To strike a balance, we
will use two-cycle wake-up latency in the rest of the paper.

Fig. 9 contrasts the noaccess and the simple policies. The
main question that we are trying to answer is whether there is
a point to keeping any per-line statistics to guide drowsy deci-
sions or if the indiscriminate approach is good enough. We show
three different configurations for each benchmark on the graph:
the noaccess policy with a 2 K-cycle window and two configu-
rations of the simple policy (4 K- and 2 K-cycle windows). In all
cases, the policy configurations follow each other from bottom
to top in the aforementioned order. This means that in all cases,
the noaccess policy has the smallest fraction of drowsy lines,
which is to be expected, since it is conservative about which
lines are put into drowsy mode.

The benchmarks on the graph can be partitioned into two
groups: ones on lines whose slopes are close to the vertical,
and ones on lines that are more horizontal, and thus, have a
smaller positive slope. All the benchmarks that are close to the
vertical are floating-point benchmarks, and their orientation im-
plies that there is very little or no performance benefit to using
the noaccess policy or larger window sizes. In fact, the mgrid
benchmark in the graph has a slight negative slope, implying
that not only would the simpler policy win on power savings,
it would also win on performance. However, in all cases, the
performance difference is negligible and the potential leakage
power improvement is under 5% in most floating-point applica-
tions. The reason for this behavior is the very bad reuse charac-
teristics of data access in these benchmarks. Thus, keeping lines
awake (i.e., noaccess policy, or larger window sizes) is unnec-
essary and even counterproductive.

This anomalous behavior is not replicated on the integer
benchmarks, where, in all cases, the noaccess policy wins on
performance, but saves the least amount of power. Does this
statement imply that if performance degradation is an issue,
then one should go with the more sophisticated noaccess
policy? It does not. The slope between the upper two points
on each line is almost always the same as the slope between
the bottom two points, which implies that the rates of change
between the datapoints of a benchmark are the same; the data
point for the noaccess policy should be able to be matched by a
different configuration of the simple policy. We ran experiments
to verify this hypothesis and found that a window size of 8 K

Fig. 9. Comparison of noaccess and simple policies. The bottom markers
on each line correspond to the noaccess policy with 2 K-cycle window, the
markers above it represent the simple policy with 4 K- and 2 K-cycle windows,
respectively.

of the simple policy comes very close to the coordinates for
the noaccess policy with a window size of 2 K. We find that
the simple policy with a window size of 4 K cycles reaches a
reasonable compromise between simplicity of implementation,
power savings, and performance. The impact of this policy on
leakage energy is evaluated in Section VI-B.

V. DROWSY INSTRUCTION CACHES

In this section, we propose a new microarchitectural control
technique for making drowsy instruction caches (as opposed to
data caches that were proposed in Section IV). We found that
while our previous algorithm was very effective for data caches,
it does not work well for instruction caches due to the different
locality characteristics between the caches. When we evaluate
the simple policy, putting all the cache lines into drowsy mode
every cycles, for both data and instruction caches, the experi-
mental results show that this algorithm, which was designed for
data caches, is not as effective for instruction caches. Fig. 10
shows the runtime increase and the fraction of drowsy lines,
which is proportional to leakage power reduction, of workloads
using the simple policy with a one-cycle wake-up latency and
a 4 K-cycle update window size, meaning that all cache lines
are put into drowsy mode every 4 K cycles. According to the
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Fig. 10. Processor, runtime increase, and the fractions of drowsy lines of
simple policy. We use a simple policy with a one-cycle drowsy-line wake-up
latency and a 4 K-cycle update window size for both L1 instruction data caches
(see Section VI-A for the detailed processor configuration).

experimental results shown in Fig. 10, the worst case runtime
increase is as much as 10.3% (crafty), and the average is 2.4%
runtime increase, although we employ an aggressive one-cycle
wake-up latency for the 32 kB two-way set associative instruc-
tion cache. This is in sharp contrast with the simple policy for
the data cache, where the worst runtime increase is no more than
1.2%, and the average is 0.6% runtime increase, although the
fractions of drowsy lines for both caches are similar. These ex-
perimental results imply that the application of the technique
developed in Section IV to instruction caches can result in poor
processor performance compared with the data cache. The main
reason for this behavior is that data caches tend to have better
temporal locality, while instruction caches tend to have better
spatial locality.

Several researchers have proposed the use of subbanks as
a means of reducing power consumption in caches. In [31],
the cache is partitioned into several subbanks, and on each ac-
cess, only a limited set of subbanks are checked for their con-
tents. This approach reduces the dynamic power consumption
at the cost of slightly increasing the cache access time due to
additional decoder logic for indexing the subbanks. In [19], a
leakage power reduction circuit technique is applied to the sub-
bank that has been most recently accessed (see Section II-A for

the detailed technique). However, it requires a finite wake up or
precharge time to access a subbank which has not been accessed
or has been in sleep mode. This incurs a processor performance
penalty to wake up the next target subbank on the critical path,
where the penalty for the wake up can be several cycles. Ac-
cording to our experiments, the use of architectural techniques
employed in [19] (we call it “simple wake up”) can result in a
worst case runtime increase of 15.7% (crafty), and the average
runtime impact is 3.6% for the 32 kB two-way set associative
instruction cache, even when assuming an aggressive one-cycle
wake-up latency.

To minimize the performance impact as well as leakage
power consumption, we propose a low-leakage instruction
cache architecture using our drowsy circuit technique combined
with cache subbanking and two subbank prediction techniques.
Our prediction techniques rely on the insight that transitions
between subbanks are often correlated with specific types
of instructions. For example, the program counter, which is
the instruction cache access index, remains in small cache
regions for relatively long periods of time due to the program
loops. On the other hand, there are often abrupt changes in the
accessed cache region when subroutines are called, or when the
subroutines return, and long-distance unconditional branches
are executed. Most conditional branches stay within the current
cache region, and it is rare that the these branches jump across
page boundaries.

A. Cache Architecture Using DVS and Memory Subbanking
Techniques

Fig. 11 illustrates a 16 kB direct-mapped cache architecture
using a DVS technique and four 4 kB subbanks. The predecoder
identifies which subbank is accessed with a cache access ad-
dress, and the decoder in each subbank selects an appropriate
cache line in the subbank with the predecoded address. In this
technique, the predecoder includes the wake-up logic and drives
a wake-up signal to the target subbank. One subbank is active,
while the other subbanks are in the drowsy mode. Whenever
the processor accesses cache lines in the other subbank and the
cache hits, the predecoder activates that subbank, and puts the
current subbank into the drowsy mode. During the wake-up of
the next subbank, the processor halts, because we must wait to
reinstate the power supply levels to the normal voltage level in
the manner of the DVS technique explained earlier. This is the
wake-up latency. If the cache misses, the wake-up latency can
be hidden during the miss-handling cycles. Therefore, it is crit-
ical to wake up the next subbank in case of a cache hit as soon
as possible to reduce performance degradation.

Each cache line consists of a drowsy cache line, illustrated in
Fig. 12. In this architecture, compared with the drowsy cache
line represented in Fig. 5, we do not need a drowsy bit for
each line. Instead, the wake-up logic in the predecoder sends
active low wake-up signals to the target subbank. Furthermore,
we modify the precharge circuit to reduce the leakage current
through the access pass transistors in the conventional 6T
memory cell by gating the precharge signal with the wake-up
signal. With this precharge gating technique, we do not need to
use high- transistors to reduce the leakage power through
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Fig. 11. Instruction cache architecture using memory subbanking and DVS techniques.

Fig. 12. Implementation of a drowsy cache line and a precharge circuitry for a subbank.

the access transistors, which either improves access time or
further reduces the leakage power of the caches, compared with
the technique in Section IV-A. For a set-associative cache, we
can organize the subbanks in the following way. Assuming a 32
kB four-way associative cache, we can organize each way with
two 4-kB subbanks, and we activate only one subbank among
eight 4-kB subbanks.

B. Next Subbank Prediction Techniques

Without any prediction for the next target subbank, we lose
significant performance as a result of the wake-up penalties, as
mentioned in Section V-A. However, according to our analysis,
most transitions between the subbanks are caused by subrou-
tine calls, returns, and long-distance jumps, and these transition
points or addresses from one to another subbank in the instruc-
tion caches are quite predictable. If we maintain and look up
the transition address history of the instruction cache in a buffer
structure, we will be able to wake up the next subbank before ac-

cessing it and not pay any additional wake-up penalty. To reduce
the runtime impact, we introduce two next subbank prediction
techniques in this section.

1) Next Subbank Prediction Buffer (NSPB): Fig. 13 illus-
trates a NSPB technique for an instruction cache. In the NSPB,
each entry contains a predicted subbank index, a valid bit, a sub-
bank transition sign instruction address fetched one cycle earlier
than a subbank transition triggering instruction, assuming the
subbank wake-up latency is one cycle. In Fig. 13,
at is the subbank transition sign instruction and

at is the subbank transition, trig-
gering instruction causing a transition from subbank three to
two. The NSPB is built with a content addressable memory
(CAM), and the address field of the NSPB entry is used for an
associative search index. To detect the subbank transition and
wake up the target subbank one cycle ahead, the NSPB entry
should contain an instruction address fetched one cycle ear-
lier than the triggering instruction, assuming that the processor
fetches one instruction per cycle in this example.
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Fig. 13. Next subbank prediction buffer.

In each instruction fetch cycle, the processor looks up
the NSPB entries based on the program counter value (e.g.,

). When there is any matched address in the NSPB,
the processor wakes up a subbank based on the predicted next
target subbank index (e.g., 2). Although a subbank transition
triggering instruction is fetched in the consecutive cycle (e.g.,

at ), the processor does not need
to wait until the next subbank is woken up, because it has been
woken up in the previous cycle. For the processor fetching and
executing multiple instructions per cycle, the last instruction
address accessed in the previous cycle or cache line is used
for the NSPB index (the processor cannot access two different
cache lines in a cycle). Whenever the processor encounters
a subbank transition, it checks whether the NSPB sent any
predicted subbank index in the previous cycle, an NSPB hit,
and it compares the predicted subbank index with the current
one and updates the prediction information accordingly. In case
of a NSPB miss, it inserts the current subbank index with the
previous cycle instruction address to an empty NSPB entry. If
the NSPB entries are full, the prediction information in a least
recently used (LRU) entry is replaced, which may cause NSPB
misses in the future cycles. Therefore, the prediction accuracy
will be dependent on the number of entries in the prediction
buffers.

Fig. 14 shows the NSPB prediction accuracies and the pro-
cessor runtime increases with the NSPB. The average predic-
tion accuracies for 32-, 64-, 128-, and 256-entry NSPBs are
51.4%, 59.2%, 71.6%, and 78.4%, respectively; increasing the
number of entries in NSPB results in improved prediction accu-
racy. While the average processor runtime increase with “simple
wake up” or no prediction is 3.62%, those of the processor with
32-, 64-, 128-, and 256-entry NSPBs are 1.9%, 1.6%, 1.0%,
0.7%, and 0.8%, respectively. It is clear that the average pro-
cessor runtime increase is inversely proportional to the predic-
tion accuracy; improved prediction accuracies reduce the pro-
cessor runtime increase impacts by 47.5%, 56.3%, 71.3%, and
79.5%. In particular, the prediction accuracy for bzip2, ammp
(shown in Fig. 15), applu, art, lucas, mgrid, mcf, swim, and vpr
(not shown in Fig. 14) is approaching 100%, eliminating the

Fig. 14. NSPB prediction accuracy and the processor runtime increase with
the NSPB.

runtime increase completely. In addition, the prediction accura-
cies for the floating-point applications are better than those for
the integer applications because of their greater spatial locality.

2) Next Subbank Predictor in Cache Tag
(NSPCT): However, the area and power consumption of the
NSPB can be significant. Here, we propose another prediction
technique in which we extend cache tags instead of using a
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Fig. 15. Next subbank predictor in cache tags.

Fig. 16. NSPCT predictor accuracy comparison with the NSPB’s. We use 64-,
128-, and 256-entry NSPBs with a one-cycle drowsy subbank wakeup latency
and a 32 kB two-way set associative instrucion cache (see Section VI-A for the
detailed processor configuration).

separate fully associative memory structure like the NSPB.
Fig. 15 illustrates the extended cache tags to support the next
subbank prediction, NSPCT. Each extended tag entry contains
the next subbank index, a valid bit, and a cache block address
of a subbank transition sign instruction (bof field in Fig. 15)
as well; we can reduce a substantial amount of power and
hardware by sharing the decoder of the tags with the predictor
field in the extended tags. The update of the predictor is
performed in the same way as the NSPB technique. However, a
separate write port is not necessary to update the predictor,
because the predictor update only occurs on a mispredicted
subbank transition; the processor updates the predictor in
the previous subbank while it accesses the next subbank.
Whenever the processor accesses the cache, it compares the
block address of the current instruction, and checks the validity
of the prediction information. If the address matches and
the prediction information is valid, the processor sends the
predicted next subbank index to the wake-up logic.

The disadvantage of this technique is that the prediction infor-
mation is lost when the cache tag line containing the prediction

information is replaced. Regardless of the disadvantage, how-
ever, the number of predictor entries in this technique is pro-
portional to the cache (set) size and only a small number of ad-
ditional bits are added to each cache tag entry. Therefore, the
NSPCT technique can be less expensive but more accurate than
the smaller NSPB requiring CAM tags. In Fig. 16, we com-
pare the NSPCT predictor accuracy with 64-, 128-, and 256-
entry NSPBs; the average prediction accuracy of the NSPCT is
73.6%. It shows better accuracy than that of a 128-entry NSPB.
Furthermore, in some applications such as crafty and perl, the
NSPCT outperforms the 256-entry NSPB.

VI. EXPERIMENTS

A. Processor Simulation Methodology

The architectural simulator used in this study is derived from
the SimpleScalar/Alpha 3.0 tool set [32], a suite of functional
and timing simulation tools for the Alpha AXP ISA. Simulation
is execution driven, including execution down any speculative
path until the detection of a fault, TLB miss, or branch mispre-
diction. Specifically, we extended - to reflect the
performance impact of waking up the drowsy cache lines or sub-
banks in the L1 data and instruction caches. The processor sim-
ulation parameters are listed in Table V. The processor microar-
chitectural parameters model a high-end microprocessor similar
to an Alpha 21 264. We augment it with a generous supply of
functional units, aggressive main memory, L1 caches, and a reg-
ister file with a latency to reduce the execution variability due to
resource constraints and memory latencies. To perform our eval-
uation, we collected results from all 25 of the SPEC2000 bench-
marks [33]. All SPEC programs were compiled for a Compaq
Alpha AXP-21 264 processor using the Compaq C and Fortran
compilers under the OSF/1 V4.0 operating system, using full
compiler optimizations . The simulations were run for
100 million instructions using the SPEC reference inputs. We
used the utility Early SimPoints [34] to pinpoint program loca-
tions of peak performance so that we can find simulation regions
that most stress, in particular, instruction caches.

B. Runtime Impact and Leakage Reduction of Drowsy Caches

To examine the effectiveness of the proposed technique, we
compare our drowsy cache techniques with the state-of-the-art
cache decay technique [21]. In the cache decay technique, it is
critical to consider the extra energy dissipation of the L2 cache
access, because decayed or dead L1 cache lines result in ad-
ditional accesses to the L2 cache. We assume that the 512 kB
four-way set associative L2 cache is designed with the sub-
banking technique of [31] to improve both the access time and
energy dissipation efficiency of the cache. We estimated the
energy dissipation of the L2 cache (380pJ per access) using
CACTI 3.2 [30] with the number of subbanks that result in the
least energy dissipation per access. To benchmark the two tech-
niques, we compare the normalized leakage energy: the ratio of
total leakage energy dissipation by L1 cache (plus dynamic en-
ergy dissipation by the extra L2 cache accesses for the cache
decay technique) divided by the total leakage energy consumed
in the same-size regular cache. To calculate the leakage energy
from the leakage power, we need to estimate the cycle time of
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TABLE V
PROCESSOR SIMULATION PARAMETERS

TABLE VI
COMPARISON OF THE PROCESSOR RUNTIME IMPACT AND LEAKAGE ENERGY REDUCTION BETWEEN DROWSY DATA CACHE AND CACHE DECAY TECHNIQUES

The normalized leakage figures in parenthesis are calculated using the leakage power of the 6 T
SRAM cell implemented with 300 mV high-V -access transistors.

the processor, which is roughly 16 FO4 delay, according to
[29]. The HSPICE simulation with the projected 70–nm tech-
nology shows that 16 FO4 is around 193 ps.

1) Drowsy Data Cache: Table VI shows the comparison of
the processor runtime impact and the leakage power reduction
between the drowsy data cache and cache decay techniques. We
use the simple policy with a 4 K-cycle drowsy window size and
one-cycle wake-up latency for the drowsy data cache, and the
8 K-cycle decay window size as appeared in [21] for the cache
decay technique. The normalized leakage figures in the paren-
thesis are recalculated using the leakage power of the 6T SRAM
cell implemented with 300 mV high- access transistors. For
all the results in the table, we conservatively assume that there

are only 20 tag bits for the 32 kB two-way set associative cache
(corresponding to 32-bit addressing) per line, which translates
into 6.9% of the bits in a cache line. The experimental results
show that our implementation of a drowsy data cache can re-
duce the total leakage energy consumed in the data cache by
more than 60% without significant runtime impact (0.57% in
average). If the 6T SRAM cell is implemented with 300 mV
high- -access transistors, the leakage energy could poten-
tially be reduced by 75% with a 6% increase in cache access
time.

Compared with the cache decay technique, the drowsy data
cache shows less runtime impact, as well as more leakage
energy reduction, on average. Also, the drowsy data cache has
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TABLE VII
COMPARISON OF THE PROCESSOR RUNTIME IMPACT AND LEAKAGE ENERGY REDUCTION BETWEEN DROWSY INSTRUCTION CACHE

AND CACHE DECAY TECHNIQUES

The figure in parenthesis represents the prediction accuracy of the NSPCT in percentage.

relatively uniform leakage reduction over the entire SPEC2000
benchmark programs, while the decay data cache does not.
Furthermore, in some applications such as crafty, fma3d, perl,
and vortex (see the shaded region in Table IV), the system
using the cache decay technique dissipates more energy than
the regular cache and it shows more runtime impact, due to
the relatively high number of extra L2 cache accesses incurred
by the aggressive turn-off of the live cache lines. Therefore,
to prevent such a side effect, a sophisticated tuning technique
for the individual application is required for the cache decay
technique. In terms of extra hardware, both techniques require
additional transistors to control the power mode of the cache
lines. Comparing the access time of caches, both techniques
also have additional gates in their critical paths; the power and
word-line gating transistors for the cache decay and drowsy
cache, respectively, although they impact the access time very
slightly.

2) Drowsy Instruction Cache: Table VII shows the compar-
ison of the processor runtime impact and the leakage power re-
duction between the drowsy instruction cache and cache decay
techniques. We use the 4-kB subbank size, NTPCT, and one-
cycle wake-up latency for the drowsy instruction cache. We
choose the NTPCT technique because it shows modest predic-
tion accuracy (74%) with minimal hardware resource, compared
with the NSPB technique; the parenthesized figures in Table VII
represent the prediction accuracy of the NSPCT in percentage.
We conservatively assume that there are an additional seven bits
for the NSPCT prediction field (three bits for the bof field, three
bits for the predicted subbank field, and one bit for the valid
bit), which translates into 2.7% of the bits on a cache line. For
the cache decay technique, we use the 16K-cycle decay window
size showing the most energy saving among the window sizes
from 4 K to 128 K cycles. The experimental results show that
our implementation of a drowsy instruction cache can reduce

the total leakage energy consumed in the data cache by more
than 77% with a modest runtime impact (0.79% in average).

Compared with the cache decay technique, the drowsy
instruction cache shows less runtime impact and comparable
leakage energy savings on average. As noted in Section V-B,
the prediction technique reduces the runtime impact from
3.64% (no prediction) to 0.76% (NSPCT) on average, which
can be translated into a runtime impact reduction of 78%.
Also, in some applications, such as crafty and vortex (see the
shaded region in Table VII), the system using the cache decay
technique dissipates more energy than the regular cache, and it
shows more runtime impact due to the relatively high number
of extra L2 cache accesses incurred by turning off live cache
lines.

VII. CONCLUSION

The relative merits of both approaches depend strongly on
the latency and size of L2 caches. If the L2 cache is larger than
512 K bytes, as is common in today’s high performance mi-
croprocessors, the performance of the drowsy cache approach
improves relative to that of the decay cache. Furthermore, in
small low-power systems with no L2 cache, and in which L1
misses require an off-chip access, the drowsy cache approach
shows strong advantage. During our investigations of drowsy
data caches, we found that our simplest policy, where cache lines
are periodically put into a low-power mode without regard to
their access histories, can reduce the cache’s leakage power con-
sumption by 60%–75%. Our comparisons with the cache decay
algorithm, which uses a state-destructive gated- cache to
reduce leakage power, indicate that the drowsy technique not
only offers better energy savings but also lacks the pathological
behavior (which can actually increase power consumption) that
is inherent in the gated- -based technique.
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The simple policy is not a solution to all caches in the pro-
cessor. In particular, the L1 instruction cache does not do as
well with the simple algorithm and only slightly better with the
noaccess policy. Instead of applying the simple policy to the
instruction cache, we proposed subbanked drowsy instruction
caches. Our approach uses a subbank predictor that keeps only
the predicted bank awake and puts the rest of the subbanks into
a low-leakage drowsy mode, achieving leakage power reduc-
tion of more than 84% for a 32-kB cache. Our results show that
the prediction technique using the extended cache tag can re-
duce the runtime overhead by 71% for the 32-kB two-way set
associative cache, compared with the default policy where no
prediction was employed.

We believe that our combination of a simple circuit technique
with a simple microarchitectural mechanism provides sufficient
leakage power savings at a modest performance impact to make
more complex solutions unattractive. Since the cost of mispre-
diction in a drowsy cache is low both in terms of power and
performance overhead, it is especially useful for embedded pro-
cessors that lack on-chip L2 caches. On a miss, a drowsy cache
need only wake up the drowsy line that is already in the cache,
as opposed to gated- -based designs, which would have to
perform a costly off-chip access to main memory to load the
line.

An open question remains as to the role of adaptability in
determining the window size. We found that for a given machine
configuration, a single static window size of 4 K cycles performs
adequately on all of the SPEC2000 benchmarks. However, the
optimum varies slightly for each workload, thus, making the
window size adaptive would allow a finer power-performance
tradeoff.
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