
0018-9162/04/$20.00 © 2004 IEEE March 2004 57

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Making Typical
Silicon Matter
with Razor

A n old adage says, “If you’re not failing
some of the time, you’re not trying hard
enough.” To address the power challenges
that current on-chip densities pose, we
adapted this precept to circuit design.

Razor,1 a voltage-scaling technology based on
dynamic detection and correction of circuit timing
errors, permits design optimizations that tune the
energy in a microprocessor pipeline to typical cir-
cuit operational levels. This eliminates the voltage
margins that traditional worst-case design method-
ologies require and allows digital systems to run
correctly and robustly at the edge of minimum
power consumption. Occasional heavyweight com-
putations may fail and require additional time and
energy for recovery, but the overall computation
in the optimized pipeline requires significantly less
energy than traditional designs.

Razor supports timing speculation through a
combination of architectural and circuit techniques,
which we have implemented in a prototype Razor
pipeline in 0.18-micrometer technology. Simulation
results of the SPEC2000 benchmarks showed
energy savings for every benchmark, up to a 64 per-
cent savings with less than 3 percent performance
impact for error recovery.

SPEED, ENERGY, AND VOLTAGE SCALING
Both circuit speed and energy dissipation depend

on voltage.
The speed or clock frequency, f, of a digital circuit

is proportional to the supply voltage, Vdd:

f ∝ Vdd

The energy E necessary to operate a digital cir-
cuit for a time duration T is the sum of two energy
components:

E = SCV2
dd + VddIleakT

where the first term models the dynamic power lost
from charging and discharging the capacitive loads
within the circuit and the second term models the
static power lost in passive leakage current—that
is, the small amount of current that leaks through
transistors even when they are turned off. The
dynamic power loss depends on the total number
of signal transitions, S, the total capacitance load
of the circuit wire and gates, C, and the square of
the supply voltage. The static power loss depends
on the supply voltage, the rate of current leakage
through the circuit, Ileak, and the duration of oper-
ation during which leakage occurs, T.

The dependence of both speed and energy dissi-
pation on supply voltage creates a tension in circuit
design: To make a system fast, the design must uti-
lize high voltage levels, which increases energy
demands; to make a system energy efficient, the
design must utilize low voltage levels, which reduces
circuit performance.

Dynamic voltage scaling has emerged as a pow-
erful technique to reduce circuit energy demands.
In a DVS system, the application or operating sys-
tem identifies periods of low processor utilization
that can tolerate reduced frequency. With reduced
frequency, similar reductions are possible in the sup-
ply voltage. Since dynamic power scales quadrati-
cally with supply voltage, DVS technology can

A codesign methodology incorporates timing speculation into a low-power
microprocessor pipeline and shaves energy levels far below the point
permitted by worst-case computation paths.

Todd
Austin
David
Blaauw
Trevor
Mudge
University of
Michigan

Krisztián
Flautner
ARM Ltd.

58 Computer

significantly reduce energy consumption with little
impact on perceived system performance.2

ERROR-TOLERANT DVS
Razor is an error-tolerant DVS technology. Its

error-tolerance mechanisms eliminate the need for
voltage margins that designing for “always correct”
circuit operations requires. The improbability of the
worst-case conditions that drive traditional circuit
design underlies the technology.

Voltage margins
Figure 1 shows margins for factors that can affect

the voltage required to reliably operate a proces-
sor’s underlying circuitry for a given frequency set-
ting. First, of course, the voltage must be sufficiently
high to fully evaluate the longest circuit computa-
tion path in a single clock cycle. Circuit designers
typically use static circuit-level timing analysis to
identify this critical voltage.

To the critical voltage, they add the following
voltage margins to ensure that all circuits operate
correctly even in the worst-case operating envi-
ronment:

• Process margins ensure that performance
uncertainties resulting from manufacturing
variations in transistor dimensions and com-
position do not prevent slower devices from
completing evaluation within a clock cycle.
Designers find the margin necessary to accom-
modate slow devices by using pessimistically
slow devices to evaluate the critical path’s
latency.

• Ambient margins accommodate slower circuit
operations at high temperatures. The margin
ensures correct operation at the worst-case
temperature, which is typically 85-95°C.

• Noise margins safeguard against a variety of
noise sources that introduce uncertainty in
supply and signal voltage levels, such as di/dt
noise in the supply voltage and cross-coupling
noise in logic signals.

The sum of these voltages defines the minimum
supply voltage that ensures correct circuit opera-
tion in even the most adverse conditions.

Worst-case improbability
In a simple experiment, we quantified the circuit

error rates of an 18 × 18-bit multiplier block within
a high-density field-programmable gate array. We
used a Xilinx XC2V250-F456-5 FPGA because it
contains full-custom multiplier blocks, which per-
mit error-rate measurement with minimal routing-
fabric overhead.

Test setup. Figure 2 shows the test harness and cir-
cuit schematic. The multiplier produces a 36-bit
result each clock cycle. During FPGA logic place-
ment, we directed synthesis to aggressively optimize
the fast multiplier pipeline’s performance. The
resulting placement was fairly efficient; the Xilinx
static timing analyzer indicated that 82 percent of
the fast multiplier stage latency was in the custom
multiplier block.

Each cycle, two 48-bit linear feedback shift reg-
isters (LFSRs) generate 18-bit uncorrelated random
values, sending them to a fast multiplier pipeline
and, in alternating cycles, to two slow multiplier
pipelines. The slow pipelines take turns safely com-
puting the fast pipeline’s results, using a clock period
that is twice as long as the fast multiplier pipeline.

As voltage decreases, values latched into the fast
multiplier output latch may become metastable—
that is, the values captured by the latch may be in
transition between logic-0 and logic-1 and, thus,
possess a voltage between these two well-defined
values. The empty stage after the fast multiplier
stage (labeled “Stabilize” in Figure 2) gives these
potentially metastable values time to stabilize back
to 0 or 1 before they are compared with the known-
correct slow multiplier results.

A multiplexer on the output of the slow pipelines
selects the correct result to compare with the fast
pipeline’s output. If the fast pipeline and slow
pipeline results don’t match, a circuit timing error
has occurred, and the error counter is incremented.

We used the Xilinx static timing analyzer to eval-
uate the design’s performance. The analyzer indi-
cated that at 1.5 V and 85°C, the fast multiplier stage
could run at up to 83.5 MHz; at 1.5 V and
27°C (room temperature), it could run at 88.6 MHz.
All other support circuitry used to analyze multiplier
errors was validated to 140 MHz. Thus, we are con-
fident that all errors experienced in these experiments
are localized to the fast multiplier pipeline circuits.

Error rates. Figure 3 illustrates the relationship
between voltage and error rates for an 18 × 18-bit

Noise margin

Ambient margin

Process margin

Critical voltage
(determined by

critical circuit path) W
or

st
-c

as
e

vo
lta

ge
 re

qu
ire

m
en

t

Figure 1. Critical
voltage and margins
to meet worst-case
reliability
requirements.

multiplier block running with random input vec-
tors at 90 MHz and 27°C. The error rates are given
as a percentage on a log scale.

The graph also shows two important design
points:

• no margin—the lowest voltage that can still
guarantee error-free circuit operation at 27°C,
and

• full margin—the voltage at which the circuit
runs without errors at 85°C in the presence of
worst-case process variation and signal noise.

Traditional fault-avoidance design methodology
sets the circuit voltage at the full margin point.

As Figure 3 shows, the multiplier circuit fails
quite gracefully, taking nearly 180 mV to go from
the point of the first error (1.54 V) to an error rate
of 1.3 percent (1.36 V). At 1.52 V, the error rate is
approximately one error every 20 seconds—or one
error per 1.8 billion multiply operations.

The gradual rise in error rate is due to the depen-
dence between circuit inputs and evaluation latency.
Initially, only circuit inputs that require a complete

critical-path reevaluation result in a timing error. As
the voltage continues to drop, the number of inter-
nal multiplier circuit paths that cannot complete
within the clock cycle increases, along with the error
rate. Eventually, voltage drops to the point where
none of the circuit paths can complete in the clock
period, and the error rate reaches 100 percent.

Clearly, the worst-case conditions are highly
improbable. The circuit under test experienced no
errors until voltage has dropped 150 mV (1.54 V)
below the full margin voltage. If a processor pipe-
line can tolerate a small rate of multiplier errors, it
can operate with a much lower supply voltage. For
instance, at 330 mV below the full margin voltage
(1.36 V), the multiplier would complete 98.7 per-
cent of all operations without error, for a total
energy savings (excluding error recovery) of 35
percent.

RAZORED PROCESSOR ARCHITECTURE
Given the improbability of worst-case operating

conditions, an opportunity exists to reduce voltage
commensurate with typical operating conditions.
The processor pipeline must, however, incorporate

March 2004 59

100.00000000

10.00000000

1.00000000

0.10000000

0.01000000

0.00100000

0.00010000

0.00001000

0.00000100

0.00000010

0.00000001

Er
ro

r r
at

e
pe

rc
en

ta
ge

 (l
og

 s
ca

le
)

Full margin
(1.69 V)

No margin
(1.54 V)

1.78 1.74 1.70 1.66 1.62 1.58 1.54 1.50 1.46 1.42 1.38 1.34 1.30 1.26 1.22 1.18 1.14
Supply voltage

35% energy savings with 1.3% error rate

22% savings

One error every ~20 seconds

Figure 3. Measured
error rates for an
18 × 18-bit FPGA
multiplier block at
90 MHz and 27˚C.

×
18 × 18

×
18 × 18

clkclkclk

! =

36

36

Stabilize

clk/2

clk/2

clk/2clk/2

40
-b

it
er

ro
r c

ou
nt

er

Slow pipeline B

Slow pipeline A

36

clk/2

×
18 × 18

18

18

Fast pipeline

48
-b

it
LF

 S
R

48
-b

it
LF

 S
R

Figure 2. Error-rate
test for 18 × 18-bit
multiplier block.
Shaded area in the
test schematic
indicates the
multiplier circuit
under test.

60 Computer

a timing-error detection and recovery mechanism
to handle the rare cases that require a higher volt-
age. In addition, the system must include a voltage
control system capable of responding to the oper-
ating condition changes, such as temperature, that
might require higher or lower voltages.

Detecting circuit timing errors
with Razor flip-flops

Figure 4a illustrates a Razor flip-flop for a
pipeline stage. At the circuit level, a shadow latch
augments each delay-critical flip-flop. A delayed
clock controls the shadow latch.

Figure 4b illustrates a Razor flip-flop operation.
In clock cycle 1, the combinational logic L1 meets
the setup time by the clock’s rising edge, and both
the main flip-flop and the shadow latch will latch
the same data. In this case, the error signal at the
XOR gate’s output remains low and the pipeline’s
operation is unaltered. In cycle 2, the combina-
tional logic exceeds the intended delay due to sub-
critical voltage operation. In this case, the main
flip-flop does not latch the data; but since the
shadow latch operates using a delayed clock, it suc-
cessfully latches the data in cycle 3.

To guarantee that the shadow latch will always
latch the input data correctly, the allowable oper-
ating voltage is constrained at design time such that
under worst-case conditions, the logic delay does
not exceed the shadow latch’s setup time. In cycle
3, a comparison of the valid shadow latch data with
the main flip-flop data generates an error signal. In
cycle 4, the shadow latch’s data moves into the

main flip-flop and becomes available to the next
pipeline stage L2.

If a timing error occurs in a particular clock cycle
of pipeline stage L1, the data in L2 in the following
clock cycle is incorrect and must be flushed from
the pipeline. However, since the shadow latch con-
tains stage L1’s correct output data, the pipeline
does not need to reexecute the instruction through
L1. This is a key feature of Razor: It reexecutes an
instruction failure in one pipeline stage through the
following stage, while incurring a one-cycle penalty.
The proposed approach therefore guarantees an
instruction’s forward progress and avoids the per-
petual reexecution of an instruction at a particular
pipeline stage because of timing failure.

Razor flip-flop construction must minimize the
power and delay overhead. The power overhead is
inherently low because in most cycles a flip-flop’s
input will not transition; thus, the only power over-
head incurred comes from switching the delayed
clock. To minimize even this power requirement,
Razor inverts the main clock to generate the delayed
clock locally, thus reducing its routing capacitance.

Many noncritical flip-flops in a design will not
need Razor technology. For example, if the maxi-
mum delay at a flip-flop input is guaranteed to meet
the required cycle time under the worst-case sub-
critical voltage setting, it isn’t necessary to replace
it with a Razor flip-flop because it will never need
to initiate timing recovery. In the prototype Razor
pipeline designed to study this problem, for exam-
ple, we found that only 192 of a total of 2,408 flip-
flops required Razor.

Razor FF

0
1

Logic stage
L2Main

flip-flop

Shadow
latch

Error_L

Error
Comparator

clk

clk_delayed

Q1D1Logic stage
L1

Figure 4. Razor
flip-flop for a
pipeline stage.
(a) A shadow latch
controlled by a
delayed clock
augments each flip-
flop. (b) Razor flip-
flop operation with a
timing error in cycle
2 and recovery in
cycle 4.

clk
clk_delayed

D

Error

Q

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Instr 1 Instr 2

Instr 1 Instr 2

(a)

(b)

Recovering pipeline state
after timing-error detection

A pipeline recovery mechanism guarantees that
any timing failures that do occur will not corrupt the
register and memory state with an incorrect value.
We have developed two approaches to recovering
pipeline state.1 The first is a simple method based on
clock gating, while the second is a more scalable
technique based on counterflow pipelining.3

Figure 5 illustrates pipeline recovery using a
global clock-gating approach. In the event that any
stage detects a timing error, pipeline control logic
stalls the entire pipeline for one cycle by gating the
next global clock edge. The additional clock period
allows every stage to recompute its result using the
Razor shadow latch as input. Consequently, recov-
ery logic replaces any previously forwarded errant
values with the correct value from the shadow latch.

Because all stages reevaluate their result with the
Razor shadow latch input, a Razor flip-flop can tol-
erate any number of errant values in a single cycle
and still guarantee forward progress. If all stages
fail each cycle, the pipeline will continue to run but
at half the normal speed.

In aggressively clocked designs, implementing
global clock gating can significantly impact proces-
sor cycle time. Consequently, we have designed and
implemented a fully pipelined recovery mechanism
based on counterflow pipelining techniques. Figure
6 illustrates this approach, which places negligible
timing constraints on the baseline pipeline design at
the expense of extending pipeline recovery over a
few cycles.

When a Razor flip-flop generates an error signal,
pipeline recovery logic must take two specific
actions. First, it generates a bubble signal to nullify
the computation in the following stage. This signal
indicates to the next and subsequent stages that the

pipeline slot is empty. Second, recovery logic trig-
gers the flush train by asserting the ID of the stage
generating the error signal. In the following cycle,
the Razor flip-flop injects the correct value from
the shadow latch data back into the pipeline, allow-
ing the errant instruction to continue with its cor-
rect inputs.

Additionally, the flush train begins propagating
the failing stage’s ID in the opposite direction of
instructions. At each stage that the active flush train
visits, a bubble replaces the pipeline stage. When
the flush ID reaches the start of the pipeline, the
flush control logic restarts the pipeline at the
instruction following the failing instruction.

In the event that multiple stages generate error
signals in the same cycle, all the stages will initiate
recovery, but only the failing instruction closest to
the end of the pipeline will complete. Later recov-
ery sequences will flush earlier ones.

RAZOR PIPELINE PROTOTYPE
To obtain a realistic prediction of the power

overhead for detecting and correcting circuit tim-
ing errors, we implemented Razor in a simplified
64-bit Alpha pipeline design, using Taiwan
Semiconductor Manufacturing Co. 0.18-microm-
eter technology to produce the layout.1 In addition
to gate- and circuit-level power analysis on the
error-detection-and-recovery design, we performed
architectural simulations to analyze the overall
throughput and power characteristics of Razor-
based voltage reduction for different benchmark
test programs. The benchmark studies demon-
strated that, on average, Razor reduced simulated
power consumption by nearly a factor of two—a
greater than 40 percent reduction—compared to
traditional design-time dynamic voltage scaling and
delay chain-based approaches.

March 2004 61

Time (in cycles)

IF ID EX* MEM* MEM
MEM

WB

(b)

IF ID EX MEM WB

IF ID EX WB

IF ID EX MEM

ST
ST

ST

STStall

Stall

Razor latch gets
correct EX value

Correct value
provided to MEM

In
st

ru
ct

io
ns

IDIF

EX

 PC
Recover Recover Recover Recover

Ra
zo

r F
F

St
ab

ili
ze

r F
F

Ra
zo

r F
F

Ra
zo

r F
F

Ra
zo

r F
F

(a)

clk

Error Error Error Error

MEM WB
(reg/mem)

ST

Figure 5. Pipeline
recovery using
global clock
gating. (a) Pipeline
organization and
(b) pipeline timing
for an error
occurring in the
execute (EX) stage.
Asterisks denote
a failing stage
computation. IF =
instruction fetch;
ID = instruction
decode; MEM =
memory; WB =
writeback.

62 Computer

Power analysis
Figure 7 shows the design layout; Table 1 lists

the specifications and test results for error-free
operation and for error-correction-and-recovery
overhead. The pipeline consists of instruction fetch,
instruction decode, execute, and memory/write-
back with 8 Kbytes of both I-cache and D-cache.
Performance analysis revealed that only the instruc-
tion decode and execute stages were critical at the
worst-case voltage and frequency settings, thus
requiring Razor flip-flops for their critical paths.
While the overall design included a total of 2,408
flip-flops, only 192 of them implemented Razor
technology. The clock for the Razor flip-flops was
delayed by a half cycle from the system clock.

We performed both gate-level power simulations
and SPICE (simulation program with integrated
circuit emphasis) to evaluate the power overhead
of the timing-failure detection and recovery circuit.
The total power consumption during error-free
operation at 200 MHz is 425 mW at 1.8 V.

Table 1 lists two energy consumption values,
switching and static, for standard and Razor flip-

flops over one clock cycle in error-free operation.
These values reflect whether the latched data is
changing or not changing, respectively. We expect
a power overhead of 12.2 mW for inserting delay
buffers to meet short-path constraints, bringing the
total overhead for the detection and recovery cir-
cuitry in error-free operation to 3.1 percent of total
power consumption.

The energy required to detect a setup violation,
generate an error signal, and restore the correct
shadow latch data into the main flip-flop was 210
femtojoules (10–15) per such event for each Razor
flip-flop. The total energy required to perform a sin-
gle timing-error detection and recovery event in the
pipeline was 189 picojoules (10–12), resulting in an
additional overhead of approximately 1 percent
more total power when operating at a pessimistic
10 percent error rate.

Architectural benchmark tests
To further explore the design’s efficiency, we

developed an advanced simulation technique based
on the SimpleScalar architectural tool set. This tech-
nique combines function-level architectural simu-
lation with detailed SPICE-level circuit simulation,
enabling the study of how voltage influences the
timing of the pipeline stage computation.

Table 2 lists simulation results for the SPEC2000
benchmarks running on the simulated Razor pro-
totype pipeline. Through extensive simulation, we
identified the fixed energy-optimal supply voltage
for each benchmark. This is the single voltage that
results in the lowest overall energy requirement for
each program. Table 2 also shows the average
pipeline error rate, energy reduction, and pipeline
throughput reduction (instructions per clock) at the
fixed energy-optimal voltage. The total energy com-
putation includes computation, Razor latch and
check circuitry, and the total pipeline recovery
energy incurred when an error is detected.

The Razor latches and error-detection circuitry

Time (in cycles)

(b)

IF ID EX* Bubble MEM
FlushEX FlushID FlushIF

WB
ID EX MEM WB

IF ID EX ID

IF ID

ST
ST

IF

IF

Razor detects fault,
forwards bubble toward WB,
initiates flush toward IF

Pipeline flush
completes

In
st

ru
ct

io
ns

 IDIF EX

PC

Recover Recover Recover Recover

Ra
zo

r F
F

St
ab

ili
ze

r F
F

Ra
zo

r F
F

Ra
zo

r F
F

Ra
zo

r F
F

(a)

Error

MEM
(read only)

WB
(reg/mem)

ST

IF

FlushID
Flush

control

Bubble Error

FlushID

Bubble Error

FlushID

Bubble Error

FlushID

Bubble

Figure 6. Pipeline
recovery using
counterflow
pipelining. (a)
Pipeline
organization and
(b) pipeline timing
for an error
occurring in the
execute (EX) stage.
Asterisks denote
a failing stage
computation. IF =
instruction fetch;
ID = instruction
decode; MEM =
memory; WB =
writeback.

3.0 mm

3.3 mm

I-cache Register file

WB

D-cache

IF ID EX

M
EM

Figure 7. Razor
prototype layout.
A simplified 64-bit
Alpha pipeline
consists of
instruction fetch,
instruction decode,
execute, and
memory/writeback
with both I- and
D-cache.

increase adder energy by about 4.3 percent. The
energy for error detection and recovery is conserv-
atively estimated at 18 times the cost of a single add
(at 1.8 V), based on a six-cycle recovery sequence
at typical activity rates.

Clearly, running the pipeline at a low error rate
can reclaim significant energy. All of the bench-
marks showed significant energy savings, ranging
from 23.7 to 64.2 percent. One particularly encour-
aging result is that Razor mutes error rates and per-
formance impacts up to and slightly past the
energy-optimal voltage, after which the error rate
rises very quickly. At the energy-optimal voltage
point, the benchmarks suffered at most a 2.49 per-
cent reduction in pipeline performance due to
recovery flushes.

There appears to be little tradeoff in performance
when fully exploiting energy savings at subcritical
voltages. We have simulated voltages down to
0.6 V, but our Razor prototype design can only
validate circuit timing down to 1.2 V. This con-
straint will limit the energy savings of four of the
benchmarks.

Since additional voltage scaling headroom exists,
we are examining techniques to further reduce volt-
age in future prototype designs.

FUTURE WORK
We submitted the prototype Razor pipeline

design for fabrication in October 2003 and expect
to test the real silicon early this year.

Meanwhile, two immediate questions must be
answered to fully implement Razor technology:
How do we design razored control logic, and how
do we design razored memories? Our initial

research indicates that we can develop microar-
chitectural solutions to address delay failures that
occur in the control logic, and we are investigating
the use of double-sampling sense amplifiers for
developing a Razor-enabled cache.

We see several potential applications of Razor
technology in the future.

Self-tuning systems
In its current form, Razor sets voltage globally—

chip-wide, but we could refine it to allow distrib-
uted voltage control. Under a distributed control
system, each processor pipeline stage could operate
at a separate, potentially different voltage deter-

March 2004 63

Table 1. Razor prototype specifications.

Description Specification

Technology node 0.18 mm
Voltage range 1.8 V to 1.2 V
Total number of logic gates 45,661
D-cache size 8 Kbytes
I-cache size 8 Kbytes
Die size 3 × 3 mm
Clock frequency 200 MHz
Clock delay 2.5 nS
Total number of flip-flops 2,408
Number of Razor flip-flops 192
Total number of delay buffers 2,498
Error-free operation
Total power 425 mW
Standard FF energy (switching/static) 49 fJ / 95 fJ
Razor FF energy (switching/static) 60 fJ / 160 fJ
Total delay buffer power overhead 12.2 mW
Total power overhead 3.1%
Error correction and recovery overhead
Energy per Razor FF per error event 210 fJ
Total energy per error event 189 pJ
Recovery power overhead at 10% error rate 1%

Table 2. Energy-optimal characteristics for SPEC2000 benchmarks.

Error rate Energy reduction Pipeline throughput
Program Optimal Vdd (percent) (percent) reduction (percent)

bzip 1.1 0.31 57.6 0.70
crafty 1.175 0.41 60.5 0.60
con 1.3 1.21 34.4 1.24
gap 1.275 1.15 30.1 2.49
gcc 1.375 1.62 23.7 1.47
gzip 1.3 1.03 35.6 0.41
mcf 1.175 0.67 48.7 0.00
parser 1.2 0.61 47.9 0.29
twolf 1.275 2.67 30.7 0.31
vortex 1.3 0.53 42.8 0.14
vpr 1.075 0.01 64.2 0.00
Average 42.4

64 Computer

mined by monitoring pipeline stage error
rates. Releasing the constraint of a single
operating voltage enables significant opti-
mizations of voltage assignments across the
processor stages, leading to further power
savings.

Alternatively, we can maintain global volt-
age control but skew the clock phase indi-
vidually for each unit to perform a type of
dynamic retiming. High-clock-rate proces-
sors employ similar techniques to statically
adjust clock skew.

Extreme voltage scaling
Current voltage-scalable designs are typically

limited to operating voltages within 50 percent of
maximum supply voltage.4,5 This translates to a
total power improvement of at most four times,
due to the quadratic dependence of power on
voltage.

However, our work on drowsy caches shows that
memories can operate as low as the threshold volt-
age of their transistors (typically one-third of nor-
mal supply voltage).6,7 In fact, it is possible to push
the supply voltage to subthreshold levels as low as
a few hundred millivolts. The power savings pos-
sible in such regimes is dramatic—approaching a
factor of 10. The cost of bringing units out of
drowsy mode when they are needed is an obstacle
to this approach, but we have already solved many
of the issues in this area. Operating at these levels
introduces a degree of uncertainty in unit behav-
iors, which makes subthreshold voltage scaling an
ideal application for Razor.

Reliability
Razor technology and extensions to it may help

solve more general transient failures. For example,
a number of radiation sources in nature can affect
electronic circuit operations. The two most preva-
lent are

• gamma rays, which arrive from space (while
the atmosphere filters out most of them, some
occasionally reach the Earth’s surface, espe-
cially at higher altitudes), and

• alpha particles, which are created when atomic
impurities (found in all materials) decay.

When these energetic particles strike a very small
transistor, they can deposit or remove sufficient
charge to temporarily turn the device on or off, pos-
sibly creating a logic error.8,9 They have posed a
problem for dynamic RAM designs since the late

1970s when DRAM capacitors became sufficiently
small to be affected by them.10

It is difficult to shield against natural radiation
sources. Gamma rays that reach the Earth’s surface
have such high momentum that only thick, dense
materials can stop them.11 A thin shield can stop
alpha particles, but if the shield is not free of atomic
impurities, it becomes an additional source of nat-
ural radiation. Neither shielding approach is cost-
effective for most system designs.

Furthermore, the smaller feature sizes that have
driven the digital revolution make the particles rel-
atively larger. Their impact (literally) is growing
dramatically, and designers will likely be forced to
adopt fault-tolerant design solutions to protect
against them. Razor offers a solution that may com-
pare well with conventional error-correcting codes.

Process variability
As feature sizes drop below 100 nanometers, the

variation in key parameters, such as supply and
threshold voltages and transistor widths, increases
dramatically. These variations limit the guaranteed
performance of circuits and potentially neutralize
the benefits of smaller silicon geometries.

Razor removes the supply voltage design mar-
gins normally needed to account for worst-case
technology variations between different chip
instances (fabrication-time variability). Razor
designs can also adjust dynamically to a computa-
tion’s data-dependent nature, saving energy by low-
ering voltage when data dependencies permit
(runtime variability).

P ower is the next great challenge for computer
systems designers, especially those building
mobile systems with frugal energy budgets.

We believe that meeting this challenge will require
sustained rule-breaking innovation. Technologies
like Razor enable “better than worst-case design,”
opening the door to methodologies that optimize
for the common case rather than the worst.

Optimizing designs to meet the performance con-
straints of worst-case operating points requires
enormous circuit effort, resulting in tremendous
increases in logic complexity and device sizes. It is
also power-inefficient because it expends tremen-
dous resources on operating scenarios that seldom
occur. Using recomputation to process rare, worst-
case scenarios leaves designers free to optimize stan-
dard cells or functional units—at both their
architectural and circuit levels—for the common
case, saving both area and power. �

Meeting power
challenges,

especially for
mobile systems,

will require
rule-breaking
innovation.

March 2004 65

Acknowledgments
This work was supported by ARM, an Intel

Graduate Fellowship, the Defense Advanced Re-
search Projects Agency, the Semiconductor Research
Corporation, the Gigascale Silicon Research Center,
and the National Science Foundation.

References
1. D. Ernst et al., “Razor: A Low-Power Pipeline Based

on Circuit-Level Timing Speculation,” Proc. 36th
Ann. Int’l Symp. Microarchitecture (MICRO-36),
IEEE CS Press, 2003, pp. 7-18.

2. T. Mudge, “Power: A First-Class Architectural Design
Constraint,” Computer, Apr. 2001, pp. 52-58.

3. R.F. Sproull, I.E. Sutherland, and C.E. Molnar, “The
Counterflow Pipeline Processor Architecture,” IEEE
Design and Test of Computers, Fall 1994, pp. 48-59.

4. K. Flautner and T. Mudge, “Vertigo: Automatic Per-
formance-Setting for Linux,” Proc. 5th Conf. Oper-
ating Systems Design and Implementation (OSDI),
ACM Press, 2002, pp. 105-116.

5. K. Flautner et al., to appear in “IEM 926: An Energy-
Efficient SoC with Dynamic Voltage Scaling,” Proc.
Design Automation and Test in Europe (DATE-
2004), IEEE CS Press, 2004.

6. N. Kim et al., “Drowsy Instruction Caches: Leakage
Power Reduction Using Dynamic Voltage Scaling and
Cache Subbank Prediction,” Proc. 35th Ann.
IEEE/ACM Symp. Microarchitecture (MICRO-35),
IEEE CS Press, 2002, pp. 219-230.

7. K. Flautner et al., “Drowsy Caches: Simple Tech-
niques for Reducing Leakage Power,” Proc. 29th
Ann. Int’l Symp. Computer Architecture, IEEE CS
Press, 2002, pp. 148-157.

8. J. Ziegler et al., “IBM Experiments in Soft Fails in
Computer Electronics,” IBM J. Research and Devel-
opment, Jan. 1996, pp. 3-18.

9. P. Rubinfeld, “Managing Problems at High Speed,”
Computer, Jan. 1998, pp. 47-48.

10. T. May and M. Woods, “Alpha-Particle-Induced Soft
Errors in Dynamic Memories,” IEEE Trans. Elec-
tron Devices, vol. 26, no. 2, 1979, pp. 2-9.

11. J. Ziegler, “Terrestrial Cosmic Rays, IBM J. Research
and Development, Jan. 1996, pp. 19-39.

Todd Austin is an associate professor of electrical
engineering and computer science at the University
of Michigan. His research interests include com-
puter architecture, compilers, computer system ver-
ification, and performance analysis tools and
techniques. Austin received a PhD in computer sci-
ence from the University of Wisconsin. Contact
him at austin@umich.edu.

David Blaauw is an associate professor of electri-
cal engineering and computer science at the Uni-
versity of Michigan. His research interests include
VLSI design and CAD with emphasis on circuit
analysis and optimization problems for high-per-
formance and low-power microprocessor designs.
Blaauw received a PhD in computer science from
the University of Illinois, Urbana-Champaign.
Contact him at blaauw@umich.edu or visit his Web
site at http://blaauw.eecs.umich.edu.

Trevor Mudge is the Bredt Professor of Electrical
Engineering and Computer Science at the Univer-
sity of Michigan. In addition, he runs Idiot Savants,
a chip-design consultancy. His research interests
include computer architecture, CAD, and compil-
ers. Mudge received a PhD in computer science
from the University of Illinois, Urbana-Cham-
paign. He is a Fellow of the IEEE and a member of
the ACM, the IEE, and the British Computer Soci-
ety. Contact him at tnm@eecs.umich.edu.

Krisztián Flautner is the director of advanced
research at ARM Ltd. and the architect of ARM’s
Intelligent Energy Management technology. His
research interests include high-performance, low-
power processing platforms to support advanced
software environments. Flautner received a PhD in
computer science and engineering from the Univer-
sity of Michigan. Contact him at krisztian.flautner@
arm.com.

Investing in Students
www.computer.org/students/

Student members active in IEEE Computer Society chapters
are eligible for the Richard E. Merwin Student Scholarship.

Up to four $3,000 scholarships are available.
Application deadline: 31 May

SCHOLARSHIP
MONEY FOR
STUDENT LEADERS

	footer1:

