
1

SimpleDSP: A Fast and Flexible DSP Processor Model

(EXTENDED ABSTRACT)

Jeff Ringenberg, David Oehmke
Todd Austin, Trevor Mudge

{jringenb, doehmke, taustin, tnm}@eecs.umich.edu
The University of Michigan

Advanced Computer Architecture Lab

1.0 Introduction

When designing a future mobile microprocessor, the standard model of high performance at all costs does

not apply. Power usage and chip costs are two major design points that must be minimized in order for the

processor to be a viable product. Unfortunately, many current high performance designs satisfy neither of these

requirements and, therefore, a separate class of machines has emerged that incorporates DSP functionality. As a

tool to explore this design space, we have developed a simulator for a popular DSP, the Texas Instruments

TMS320C6211 (C62x) [1], and incorporated it into the widely used SimpleScalar toolset [2]. With this simulator,

we have run detailed, cycle-accurate simulations of the underlying architecture and have found several

bottlenecks within the design. In addition, we have discovered the importance of appropriate code design and

selection through the use of intrinsic instructions. However, much deeper studies remain to be performed since

the purpose of this paper is to show the functionality and usage of the simulator.

2.0 Motivation

 The importance of DSP systems doesn’t need justification. However, until recently there has not been

widely disseminated support for simulating such architectures in the academic community. The need for this type

of simulator is apparent in the abundant usage of SimpleScalar, and many new papers in a wide range of

microarchitecture research make use of this popular simulation environment. However, since it models the

architecture seen in a superscalar processor, it is not useful for evaluating architectures that do not adhere to this

type. This is especially true for DSP and VLIW processors. Therefore, in order to address this functional lacking,

we have decided to modify the existing SimpleScalar structure to facilitate the simulation of both types of

architecture with a focus on flexibility and accuracy.

3.0 Related Work

 Due to the fact that DSP and VLIW processors are not currently the mainstream designs for modern high

performance processors, there are not many simulators available that are free to use for research. Texas

Instruments and other third party vendors offer several development environments for the C62x architecture, the

most popular of which is the Code Composer Studio from TI [3]. However, these tools do not expose enough of

the underlying architecture to allow for the detailed research of new design ideas.

2

 An example of one tool, WETICS [4], created to simulate a DSP has been developed at the University of

Texas. The tool is a web-based JAVA simulator that provides support for the TI-C30 and several Motorola MCx

DSPs. However, the project is no longer under development. Unfortunately, this same status holds true for

several other simulators of DSP, and VLIW, architectures. Our hope is that by building our model into

SimpleScalar, we will garner much wider exposure and support than previous attempts.

4.0 Implementation

SimpleScalar was designed to simulate processors in which each instruction semantically had a latency of

only one cycle and instructions were executed serially. However, a VLIW processor, which the TI-C62x is,

includes both parallel execution and non-uniform latencies. For these processors, the compiler is responsible for

statically scheduling the code using these latencies. Preserving the semantics of the generated code requires that

correct timing be used for each instruction and that instructions be executed in parallel making the functional

simulation of a VLIW processor much more difficult than that of a scalar processor.

The TI-C62x itself has some additional features, many geared towards DSP functionality, that further

complicate the simulation. The pipeline is more complex because the processor has several techniques to improve

code density including NOPs with multi-cycle latencies and the decoupling of fetch packets and execution

packets. Instruction decode is also difficult because most instructions can be executed on either of the DSP’s two

clusters and on several different functional units, and most instructions also allow one or more sources to be a

register, a constant, or a register from the other cluster. A final complication is that the TI compiler targets their

test board and all the I/O system calls are implemented by the connected PC using a breakpoint and global buffer

for data transfer.

The complications inherent in this architecture meant that it was not practical to merge this into the

existing SimpleScalar simulators. Instead, we decided to create a new simulator based on the ideas in

SimpleScalar and to use as much of the existing code as possible. This would allow us to take advantage of future

improvements, allow people familiar with SimpleScalar to quickly learn our simulator, and to provide for possible

future interoperability in areas like heterogeneous multiprocessing. We also decided to explicitly simulate each

stage of the TI pipeline to guarantee accurate timing of all the instructions and to make the resulting simulator

cycle accurate.

Similar to SimpleScalar, we use “def” files to decode and implement instructions. However, our

simulator uses two separate def files. One def file is similar to SimpleScalar and decodes the instructions. The

decode is done as one pass on the entire text section of the executable and an operation structure is filled out for

each instruction. The other def file, called the operation def file, contains the timing information of the operation

as well as its implementation. The basic execution of an operation is similar to that done in SimpleScalar with

one notable exception. The reading and writing of registers is removed from the instruction specific

implementation and done in a generic fashion using the information stored in the operation structure with the

values stored into, or read from, the structure. This was done both to simplify instruction implementations and

3

also because some of these operations must occur in parallel. As an example, during each cycle all data reading

must be complete before any writing can be done. Finally, the pipeline code was taken out and put into a separate

pipeline file so that the bulk of the code could be shared across all the different versions of our simulator. The

pipeline code provides macros that the various versions can use to hook into the pipeline. These were used to

provide additional stats in sim-vliw-profile, to hook into the cache model in sim-vliw-cheetah and sim-vliw-

cache, and to verify the simulation against a trace file in sim-vliw-verify.

5.0 Experiments

 As mentioned previously, our simulator has allowed us to do detailed, cycle-accurate simulations of the

TI-C62x architecture and subsequently find what features make it work well and what do not. Since the purpose

of this paper is to show the functionality and features of the simulator, and not performance results, demonstrative

experiments were run for a few DSP-like benchmarks, namely the GSM coder/decoder [5] and several

components of a SmartCamera system [6].

For our first experiment, we found the number, and then analyzed the removal, of cycles that consist

completely of NOP instructions. Due to the statically scheduled, VLIW nature of the C62x, NOP instructions are

inserted after branches and any other multi-cycle latency instructions to ensure correct operation. Simply

removing the NOP cycles from the code is not as straightforward as one would think, since the code would not

function properly without them. Therefore, the results function as a best case scenario if the compiler did not

need to insert these scheduling delays. As Figure 1 shows, there are many cycles consisting only of NOPs that

could contribute to wasted execution and if they could be removed, execution time would greatly decrease.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GSM Encoder GSM Decoder Smart Camera
Region

Smart Camera
Contour

Smart Camera
Ellipse

Smart Camera
Graph

Smart Camera
HMM

Benchmark

R
el

at
iv

e
E
xe

cu
ti
o
n
 T

im
e

All NOP Cycles Removed Branch Delay Cycles Removed

Figure 1: NOP cycles and the Effects of their Removal

4

For our second experiment, we looked at the effects on execution time of including intrinsic instructions

in the GSM code. These intrinsic instructions, a saturated add is a good example, are tailor made for the C62x

and are used as much as possible. Since TI provided us with the header files [7] containing the insertion of the

intrinsic instructions into the GSM code, we were unable to get these results for the SmartCamera applications. It

should be noted that these hand coded header files are required for appropriate intrinsic selection because the TI

compiler is not efficient at discovering this information. Our third experiment explores the varying abilities of the

compiler to create efficient code.

As Figure 2 shows, the insertion of the intrinsic instructions has a dramatic effect on the execution time of

the GSM code. This is a perfect example of the importance of these types of instructions on the efficient

generation and execution of code on a DSP or any other such architecture that includes these types of instructions.

It also demonstrates the need for having a good compiler that can decide where these instructions should be

placed or at least having hand coded header files that fulfill the same function.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

With Intrinsics Without Intrinsics With Intrinsics Without Intrinsics

GSM Encoder GSM Decoder

Benchmark

R
el

at
iv

e
E
xe

cu
ti
o
n
 T

im
e

Figure 2: The Effects of the Addition of Intrinsic Instructions

For our third experiment, we decided to actually look at the TI compiler’s ability to create efficient code

by exploring the effects of various compiler optimizations on execution time. Since VLIW processors are highly

dependent on their compiler for optimal code generation and scheduling, it makes sense to explore which

optimizations are the most beneficial.

In Figure 3, all relative execution times are normalized to defaults with –O3 optimization. The first two

optimizations turn off debug information and the graph shows that for some benchmarks quite a bit of

performance is lost when this debug information left in. Forcing the stat counting function inline on the GSM

code has quite a performance benefit as well. C62x function calls have a fair amount of overhead, so inlining

5

works well when a very small function is called often. For the next optimization, assuming no aliasing allows the

compiler to be aggressive in register allocation and in instruction reordering and this works in a couple of the

benchmarks. Next, using a large inlining threshold benefits those benchmarks that contain a lot of function calls.

Finally, whole program analysis provides the compiler with more information to use when compiling for instance

propagating constants through function calls. In several benchmarks, this allows the compiler to more efficiently

software pipeline some of the major loops. As the graph shows, it is not always as simple as turning on all

optimizations, since for a couple of the benchmarks turning on whole program analysis actually degrades the

performance.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Intrinsic GSM
Encoder

GSM Encoder Intrinsic GSM
Decoder

GSM Decoder Smart Camera
Region

Smart Camera
Contour

Benchmark

R
el

at
iv

e
E
xe

cu
tio

n
Ti

m
e

Profile Debug No Debug Inline Counts Full Speculation Large Inline Threshold Whole Program

Figure 3: The Effects of Compiler Optimizations on Execution Time

In addition to these experiments, we have also run, and compiled statistics for, many other experiments that

measure function unit usage, crosspath and cluster utilization, instruction class breakdowns, addressing mode

types, branch and predicated instruction breakdowns, and many other statistics that measure the efficiency of the

C62x.

6.0 Conclusion

 In this paper, we have presented a simulator that can be used to do detailed analysis of a popular DSP, the

TI TMS320C6211. In addition to being able to simulate this particular architecture, the simulator is general

enough to allow the simulation of other VLIW machines with only minor changes to the infrastructure. With this

simulator, it is now possible to explore both new architecture ideas and compiler ideas in a flexible and accurate

manner. It is our opinion that this tool will make the design of future mobile devices easier and hopefully usher in

a new era of design and simulation.

6

References

[1] Texas Instruments. TMS320C6000 CPU and Instruction Set Reference Guide. SPRU189F. October 2000.

Available from http://focus.ti.com/lit/ug/spru189f/spru189f.pdf.

[2] D.C. Burger and T.M. Austin. The SimpleScalar Tool Set, Version 2.0. Technical Report CS-TR-97-1342,

University of Wisconsin-Madison, June 1997.

[3] Texas Instruments. Code Composer Studio IDE Version 2.2. August 2003. Available from

http://www.ti.com/tmwccs.

[4] D. Arifler and B. L. Evans. Web-Enabled Simulation and Debugging for Digital Signal Processors and

Microcontrollers. Available from http://anchovy.ece.utexas.edu/ ~arifler/wetics/.

[5] GSM 06.51 Encoder/Decoder Digital Cellular Telecommunications System (Phase 2+), Enhanced Full Rate

Speech Processing Functions Version 8.0.1. Available from http://www.etsi.org.

[6] T. Lv, B. Ozer, and W. Wolf. "Workload Characterization for Smart Cameras". 3rd Workshop on Media and

Streaming Processors (held in conjunction with the 34th International Symposium on Microarchitecture).

December 2001.

[7] Texas Instruments. ETSI Math Operations in C for the TMS320C62x. SPRA617A. November 2000.

Available from http://focus.ti.com/lit/an/spra617a/spra617a.pdf.

