Reducing Register Ports Using Delayed Write-Back
Queues And Operand Pre-Fetch

Nam Sung Kim and Trevor Mudge
Advanced Computer Architecture Lab
The University of Michigan
1301 Beal Ave. Ann Arbor, Ml 48109-2122

{kimns, tnm}@eecs.umich.edu

ABSTRACT

In high-performance wide-issue microprocessors the access time,
energy and area of the register file are often critical to overall
performance. Thisis because these pararmeters grow superlinearly
as read and write ports are added to support wide-issue. This paper
presents techniques to reduce the number of ports of aregister file
intended for a wide-issue microprocessor without noticeably
impacting its IPC. Our results show that it is possible to replace the
16 read/8 write port file of an eight-issue processor with an 8
read/8 write port file so that the impact on IPC is insignificant.
This is accomplished with the addition of some small auxiliary
memory structures. Furthermore, the access time of the smaller file
plusthe auxiliary structuresis such that if it were the critical path a
45-50% increase in clock speed would be possible. Finally, thereis
an energy per access savings of about 20% and an area savings of
40%, which has the potential for further savings by shortening
global interconnect in the layout. An extension to the scheme that
reduces the number of write ports from 8 to 6 is also presented. It
suffers modest penalty in terms of IPC, but shows further
reduction in energy and area. Depending on implementation
characteristicsit could yield afurther increase in performance.

Categories and Subject Descriptors. B.0 [Hardware]:
General; C.1.1 [Computer Systems Organization]: Processor
Architecture — Pipeline Processors

General Terms: Design, Performance, Measurement

Additional Keywords and Phrases: Out-of-order Processor,
Register File, Write Queue, Low Power, Instruction Level
Parallelism

1. INTRODUCTION

In high performance wide-issue microprocessors the register
file often plays a critical role in determining the cycles time,
directly thorough its access time and indirectly through its
size. Furthermore it accounts for a significant fraction of the
processor core’s power consumption. These register files need
to be large to support multiple in-flight instructions and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or afee.

ICS 03, June 23-26, 2003, San Francisco, California, USA.

Copyright 2003 ACM 1-58113-733-8/03/0006...$5.00.

multiported to avoid stalling instruction issue. In the Alpha
21464, the register file design was several times larger than the
64 KB primary caches [12] and was split to reduce cycle time
impact. Both large size and high numbers of ports result in
slow access and high energy dissipation.

Figure 1 shows the effects of size and number of ports on
access time, energy, and area for 128-, and 256-entry register
files having various combinations of read and write ports. The
numbers were calculated using CACTI 3.0 [13] assuming a
0.18um technology. We modified CACTI so that it can
estimate the access time, energy, and area of small memory
structures such as a multiported register files, which do not
require the tags found in cache memories — CACTI was
originally meant for caches. We considered four
configurations of register file: one with 16-read and 8-write
ports; one with 12-read and 6-write ports; one with 8-read and
4-write ports; and one with 4-read and 2-write ports. These are
intended to support 8-, 6- 4- and 2-issue machines
respectively. The values are normalized against a 256-entry
register file with 16-read and 8-write ports. Figure 1 illustrates
quite dramatically the penalty paid in access time, energy, and
area as the number of portsis increased.

In this work, we propose two techniques to reduce the number
of register ports without impacting performance. These
techniques rely on small auxiliary memory structures called a
Delayed Write-back Queue (DWQ), an Operand Pre-fetch
Buffer (OPB), and an Operand Pre-fetch Request Queue
(OPRQ). The DWQ is employed to reduce the number of read
and write ports. The other two, the OPB and the OPRQ, are
employed to reduce the number of read ports. We will show
that the use of all three structures allows fewer register file
ports, resulting in faster, smaller, lower power files, without
significantly reducing the IPC.

The DWQ provides a source of operands recently produced
from the function units. It can be implemented using a small
circular FIFO queue and avoids the need to access the large
register file for these recent operands. The DWQ reduces the
peak need for read ports. It also reduced the need for write
ports. The OPB and OPRQ pre-fetch operands in the case when
an instruction has one operand ready but is waiting on the
second in the instruction queue. Our simulations show thisis a
common occurrence and allows us to schedule the reads so that
the peak need for read portsis reduced. The use of OPB/OPRQ
essentially distributes read port accesses over several cycles.
The combination of using a DWQ and OPB/OPRQ reduces
read and write port demand more than the sum of their separate
effects without impacting IPC noticeably.

An important difference between most previous research and
ours is that we focus on reducing the number of register ports

Effect of size and number of register ports on access time, power, and area.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

00/0
256 128
access time

256
power

256

128 entries
area

Figure 1. Showstheeffect of sizeand number of portson accesstime, power and area.Thefigure showsregister fileswith
128- and 256-entries and 16-read/8-write, or 12-read/6-write, or 8-read/4-write, or 4-read/2-write ports.

rather than on reducing the number of registers. The
hierarchical register organizations of [1][2][5][14] are
examples of reducing the number of registers. Unlike these
approaches ours avoids miss penalties associated with
managing the hierarchy. In one case, [14], this management is
done by the compiler. Our approach is transparent to the
software.

Prior work that has proposed methods to reduce the access
time/size/power of register files often requires substantial
changes to the pipeline. Examples include the need to search
an active list every cycle [1], or storing register values in the
instruction queue while maintaining coherence in register
caches [2]. Such changes have the potential to create
significant complications as noted in [11].

The register caching approach proposed in [2] maintains small
register caches close to the functional units and reads register
operands from one of four sources: 1) pre-read before the issue
queue; 2) extended forwarding (bypass) logic, 3) register
caches, and 4) the register file after a register cache miss.
Because operands may be read before the issue stage it is
necessary to store operands in the instruction queue. This
results in an increase in the size of instruction queue entries
because register values are substantially larger than the
dependency tags stored in the conventional instruction queue.
The additional area and wiring required for such an issue
gueue are the primary reasons why modern issue queues or
instruction queues do not store register values. In fact, if we
store the pre-read operands in the instruction queue, each
instruction queue entry must have 128-bits of storage for the
two 64-bit source operands. Many of these operand fields will
remain unused. In our scheme, we avoid storing them in the
instruction queue by instead storing them in the OPB which
has far fewer entries (8~32) than a typical instruction queue
(256~512). The work in [2] also introduces a forwarding buffer
which can hold the recent results for 9 cycles. Again this
requires a large memory structure — a 72-entry buffer for an
8-wide issue machine — which is comparabl e to the size of the

173

actual register file. Perhaps the biggest drawback for the
forwarding buffer is the need for multiple access ports. Our
proposal for aDWQ issimilar but much smaller and it is aimed
at reducing the number of ports rather than speeding up
operand reads. Our experimental results show that we are able
to limit the size of the DWQ to 24 entries without significant
IPC loss.

In [11], Park et al. proposed two techniques to reduce the
number of ports. One is to introduce an extra stage to
determine whether to read the operands from the bypass or
register file and thus potentially reduce the need for read ports.
The other technique performs bypass prediction to select from
the bypass rather than the register file — again to potentially
save ports. Adding an extra stage increases branch mis-
prediction penalties. Furthermore, the bypass prediction
technique can mis-predict and require a pipeline stalls when
there is no available read ports.

The next section of the paper provides the motivation for this
work by showing some experimental statistics about the
read/write port utilization. Section 3 and Section 4 describe our
proposed techniques. Section 5 describes our experiment setup,
estimates the access time, energy, and area impact of reducing
the register file ports, and presents experiment results. Section
6 concludes the paper with some proposals for future direction
for this research.

2. MOTIVATION

Our experiments using the SPEC2000 benchmarks confirm
previous studies that show that wide-issue machines do not
utilize the full read/write bandwidth of their register files all
the time. In fact, the issue and write-back stages are often idle
during several cycles due to data dependencies caused by the
long latency operations such as instruction or data cache
misses and floating point operations. However, it is often the
case that wide-issue machines are designed to support the

worst case (e.g., 16 read ports and 8 write ports for an 8-wide
issue machine) to maximize ILP and performance.

Figure 2 shows the distribution of register file read port
utilization cycles at the issue stage in an 8-wide issue machine.
In this experiment, we used both SPEC2000 INT and FP
benchmarks and Simplescalar 3.0 [3] with an architectural
configuration similar to an EV8 [6]. The detailed simulation
specification is given in Section 5. To maximize read port
utilization we used a perfect branch predictor as well. The
average percentage of read port utilization cycles requiring the
full 16 read ports is about 0.1%, and that of idle cycles not
requiring any read port is around 54% when using both
SPEC2000 INT and FP benchmarks. It is evident that we have
a plenty of under-utilized cycles over which we can distribute
the reading of operands from the register file and thus reduce
the number of ports. For example, it is possible to pre-fetch
into the instruction queue ready operands from the register file
for those instructions waiting for a second operand. This pre-
fetch can be scheduled during under-utilized cycles.

Figure 3 shows the distribution of register file write port
utilization cycles at the write-back stage with the same
architectural configuration used in the experiment for Figure 2.
The average percentage of write port cycles requiring the full 8
write ports is about 9%, and that of idle cycles not requiring
any write port is about 52% according to the experimental
results for both SPEC2000 INT and FP benchmarks. It is again
evident that we have plenty of under-utilized cycles to
distribute the writing of results to the register file similar to the
read port case. A common technique for smoothing out bursty
behavior such as we see in the case of read and write port
utilization is to use a queue structure. We will show it is
possible to have fewer than 8 write ports without losing
performance by introducing a simple circular FIFO queue
between the register file write ports and function units.

Although the register file has fewer write ports, the queue will
be able to complete writing the rest of queued results while the
write-back stageisidle.

In both experiments, we used a perfect branch predictor, but
the percentage of idle cycles at both issue and write-back
stages increases if we use a real (imperfect) branch predictor,
because any branch mis-predictions cause pipeline stalls,
which opens up more opportunity to distribute reads from and
writes to the register file.

3. THEDELAYED WRITE-BACK QUEUE

3.1 Queuingwrite-back to reduce read ports

Our experiments using SPEC2000 benchmarks indicated that
most results from the function units are consumed by the
instructions waiting in the instruction queue within a few
cycles after they are produced. This is an observation that is
supported by the work of a number of researchers. In such
situations it is possible to avoid accessing the register file read
ports and get the required data directly from the bypass paths
[11] and in so doing reduce the read port bandwidth.

If we add a small memory structure, the delayed write-back
queue, we can often access the write-back queue instead of
accessing the register file, provided we have some way of
knowing that the results are in the write-back queue. This, of
course, means that many of the register file accesses can be
circumvented, which allows a possible reduction of the number
of read ports without losing any performance. Figure 4
illustrates the delayed write-back queue (DWQ) technique. The
gueue holds the results of instructions for next n cycles after
write-back. We can provide the operands to the issue stage
without accessing the register file by holding the write-back
results for a few cycles. To hold the write-backs for 2 cycles,

Register file read port utilization.

B0E20406EH8E10H12 014 W16 Ports

60%

50%

40% A

30% -

Cycle Percentage

20% -

10%

0% -+
bzip2

crafty

gce

gzip

mcf twolf vortex

parser perl

Benchmarks

Figure 2. Thedistribution of register fileread port utilization cyclesin an 8-wideissue machine at theissue stage. The
resultsfor SPEC2000 INT benchmarksare shown in this graph.

174

Register file write port utilization.

E0E1O0203WM4E5HE607 E8 Ports

60%

50%

40%

30%

Cycle Percentage

N
o
X

10%

I i

bzip2 crafty eon gce gzip mcf parser perl twolf vortex

0% -+
Benchmarks

Figure 3. Thedistribution of register filewrite port utilization cyclesin an 8-wide issue machine at the write-back stage.
Theresultsfor SPEC2000 INT benchmarks are shown in this graph.

we need a 16-entry queue in the case of an 8-issue machine elements and a mux and does not represent a major overhead.
where, in the peak case, we assume that 8 results can be As soon as the instructions waiting for operands in the
generated in acycle. In addition, we write back the results both instruction queue are woken up the ready bits in the entries set

in the register file and the write-back queue concurrently to
avoid consistency problems during renaming.

To determine whether the result operands are in the write-back
gueue and their location, we need a 2 bit counter to hold the
number of cycles of delay. The count is decremented on every

the 2-bit counters. When we issue instructions we can check
whether the counter value is zero or not, to determine which
memory structure to access — the write-back queue or the
register file asillustrated in Figure 4. In other words, the DWQ

subsequent cycle after the value is initially loaded into the performs a very similar function to the load and store buffer
counter. The counter is simple to implement using 2 memory for L1 data caches.
result tag schedule logic

A
v

= DWQ
v > CAM)
start .
src tag |RdyH 2-bit cntr
A a A
A
register register
instr || sched |[read || func |write register
queue logic |pwQ || unit file
read
bypass

Figure 4. Theblock diagram of an implementation of the 2-cycle delayed write-back queue (DWQ) in the conventional
out-of-order processor pipeline.

175

from result bus

cyclen+l ———»]

cyclen ———p

expected latency: 1-cycle —

cycle n+2

'+ 4
(s |ofwfufrfnelu]s]

cycle n+l

expected latency: 2-cycle

Mo a7 [a9 20 21 [22 [23

cycle n+3

cyclen+2 ———p
expected latency: 1-cycle —

Figure 5. Thetiming diagram of 24-entry DWQ that accepts up to 8 writes from the functional units and outputsup to 6
writestotheregister file.

3.2 Queuing write-back to reducewrite ports

As we saw in Section 2, the percentage of the write-back
cycles requiring the full write port bandwidth is very small. In
the case that we simply reduce the number of write ports, the
number of instruction issues are limited by the number of
result buses, which are equal to the number of register write
ports. However, we may reduce this potential limitation on
performance by queuing the write-backs and delaying some
when there are not enough write ports free.

To implement this technique, we may use the same DWQ
presented in Section 3.1. But the actual write-backs to the
register file will be completed a few cycles later depending on
the number of queue entries, register write ports, and write-
backs rather than after afixed delay as was the case in Section
3.1. In addition, we need to broadcast write-back latencies for
each write-back with the result tags to update the rename
mapping table, and to load counter values for the ready
operands in the instruction queue.

Figure 5 shows the timing diagram of a 24-entry DWQ that
feeds a register file of 6-write ports. The DWQ can accept up
to 8 writes, but only moves up to 6 results to the register file
every cycle. We start moving the write-back results 1 cycle
after writing the results to DWQ. During this 1 cycle delay, the
DWQ identifies empty slots (blank boxes in Figure 5) and
calculates 6 DWQ non-empty slots (shaded boxes) from which
to write into the register file. The expected latency can be
calculated by dividing the number of non-empty slots (entries)
by the number of the write ports in the register file. The logic
to do this requires 11 gates with a 4-gate delay in the case of a
6 write port register file. We obtained this design using the
Synopsys Design Compiler ™ and the Artisan™ TSMC
0.18um technology standard cell library. The DWQ structure
can be implemented with a simple 24-entry SRAM structure
that has 8 write ports and 6 read ports — the read addresses
correspond to the shaded boxes. We need 24 entries rather than
8, because of there may be some entries that stay in the DWQ
for 2 cycles.

176

4. OPERAND PRE-FETCHING

4.1 The operand pre-fetch buffer

The experiments in [8] indicate that in 80% ~ 90% of the cases
one of the operands for an instruction is ready when it enters
the instruction queue after renaming. However, most of the
instructions cannot be issued because the other operand is not
ready and thus they wait in the instruction queue for this
second operand. If an operand is ready we are able to identify
the location (or address) of the physical register during
renaming, which means that we may pre-fetch some of them
while the instructions is in the instruction queue waiting for the
second operand. This removes the potential for read-port
congestion that would occur if we were to wait until both
operands were ready before sending them to issue slots. If we
can stagger the reading in the case where one becomes
available before the other we can utilize the read ports more
efficiently. In particular, there is a potential to reduce the
number of register file read ports without impacting
performance to an unacceptable degree. Our proposed
technique to reduce the number of read ports by pre-fetching
ready operands employs an operand pre-fetch buffer (OPB) to
store the pre-fetched operands, and a status bit, the pre-fetch
flag (PF), in the instruction queue entry to specify whether the
operand is in the OPB or the register file. In the issue stage we
check the PF bit to determine where we should send the
operand addresses to retrieve the operand.

Figure 6 shows a block diagram for an implementation of the
OPB in a conventional out-of-order processor pipeline. When
the rename logic dispatches instructions to the instruction
queue, it feeds the physical register number of the ready
operands to the pre-fetch logic, which requests register ports
from the resource scheduling or select logic. The resource
scheduling logic allocates a result bus, connected to a register
file write port, to a functional unit. We need this allocation
mechanism because there are usually more functional units
than the number of result buses or register file write ports. In
addition, it should also be extended to the register file read
buses and ports because there might be more register read bus
and port requests than available resources. However, the same
resource contention situation happens in assigning result
buses, because there are more functional units than available

dispatch

rename | instr instr

wakeup /

logic queue

rdy phy.reg # >

select |

register

res register
sche. d read R func
logic ‘ unit
phy. reg #
phy. reg. #| operand

>

Figure 6. Theblock diagram of an implementation of the operand pre-fetch request buffer with OPB in the conventional
out-of-order processor pipeline.

result buses. Therefore, we use the same mechanism for
assigning the register file read buses.

If aregister read bus and port is granted to the pre-fetch logic,
it accesses the register file and store the pre-fetched operands
to the OPB with the source tags which are just the physical
register numbers. Each OPB entry contains the physical
register number and an operand. It can be implemented with a
fully associative memory, which is inexpensive because it
requires only a small number of entries (16~32) with a small
number of read and write ports (e.g., 8-read/8-write ports).

In addition, we need an additional pre-fetch flag bit associated
with each source operand field in each instruction queue entry.
When both operands for an instruction are ready and woken
up, the instruction queue request function units, result buses
and register ports be sent to the scheduling logic. If there are
available functional units, result buses and register read ports,
the selection logic issues the instruction and read operands
from the register file or the OPB according to the pre-fetch bit
status of each source tag.

4.2 Theoperand pre-fetch request queue

The operand pre-fetch technique proposed in Section 4.1 may
pre-read the operands only if there are available ready
operands in the physical register file, register read ports, and
operand pre-fetch buffer space. All these conditions must be
met in a cycle — the dispatching cycle of the instruction. This
is not the common case, because we have more register port
congestion when we reduce the number of register ports. In
other words, it reduces the chances to pre-fetch operands by
limiting the operand pre-fetches to the dispatch cycle.
However, we can improve the chances of pre-fetching
operands by adding an operand pre-fetch request queue
(OPRQ). When we do not have either any available register
read ports or operand pre-fetch space at the dispatch cycle of
the instruction, we send the physical register address of the
ready operand to the operand pre-fetch request queue.

Figure 7 shows the block diagram of an implementation of the
OPRQ combined with the OPB. In this technique, we push the
ready physical register number and the instruction queue entry
pointer of the dispatched instruction into the OPRQ at the
dispatch cycle when we do not have available resources for
pre-fetching. The OPRQ monitors availability of necessary
resources with information given from the scheduling logic.
Whenever the pre-fetch conditions are met, it requests operand

177

pre-fetches to the pre-fetch logic by sending the physical
register number from the head entry of the OPRQ. As soon as
the pre-fetch logic successfully finishes reading the requested
operand, it updates the associated pre-fetch flags in the
instruction queue with the instruction queue entry pointer from
the OPRQ.

5. EXPERIMENTAL EVALUATION

5.1 Methodology

The evaluation methodology combined detailed processor
simulation to obtain performance analysis and event counts,
with analytical modeling for estimating access time, energy,
and area for the register files having various combinations of
read and write ports. The SimpleScalar toolset [3] was
employed to model an out-of-order speculative processor with
a two-level cache. The simulation parameters, listed in Table
1, roughly correspond to those of a present-day high-end
microprocessor such as the Alpha 21464.

We replaced the register update unit found in the simulator
with instruction queues and a reorder buffer. In addition, we
modeled the congestion that results from a finite number of
read and write ports (SimpleScalar assumes an infinite number
of both), and added models for the DWQ, OPB, and OPRQ.
Our benchmarks came from the SPEC2000 INT and FP
benchmarks and were compiled with GCC 2.6.3 using “-02”
optimizations and statically linked library code. We ran 200
million instructions for each simulation after fast forwarding
20 billion to warm up the systems under study. This allowed us
to complete the simulations in a reasonable time while
avoiding results that might be biased by startup effects.

5.2
ports

(EQ 1) shows a performance loss reduction metric for
evaluating results when using the proposed techniques. This
metric shows relative performance improvement of the
proposed techniques against the register files (RFs) of 8-read
ports, and we also use the straight performance loss metric
shown in (EQ 2) for each experimental result to show absolute
performance degradation of register files with fewer ports
against the register file of full 16-read and 8 write ports.

Impact on | PC of reducingread and write

dispatch wakeup / res register
rename| instr instr select . read func
. » | sched 2 .
logic queue logic unit
phy. reg #
register OPB
rdy phy.reg # »| |prefetch read read
logic
rdy phy.reg # -
w/IQid e
sre phy. reg ¢ m

Figure 7. Theblock diagram of an implementation of the operand pre-fetch request buffer with OPB in the conventional
out-of-order processor pipeline.

Performance loss reduction =

|PC of 8-read RF w/ OPB - |PC of 8-read RF
IPC of 16-read RF - |PC of 8-read RF

x 100
(EQ1)

Straight performance loss =
IPC of 16-read RF - IPC of 8-read RF (or w/ OPB)

(EQ2)

Figure 8 shows the impact on IPC of reducing the number of
read ports by half when including a delayed write queue
(DWQ). In this experiment, 8- (1-cycle delay), 16- (2-cycle

delay), and 32-entry (4-cycle delay) DWQs were studied. The
experimental results indicate that 8-, 16-, and 32-entry DWQs
reduce the performance loss by about 78%, 85%, and 91%
(black arrows at right in figure) compared to an 8-read port
register file. The experiments also show just a straight 6%, 4%,
and 2% performance loss against a 16-read port register file.

Figure 9 shows the impact on IPC of reducing the number of
read ports by half with and without an operand pre-fetch buffer
(OPB). In an 8-wide issue machine we compare a file with 16-
read ports to one with 8-read ports. In the case with 8-read
ports we show the IPCs for 8-read ports without an OPB, and
then with 8, 16, and 32 OPBs. For each OPB size, we use

Table 1. Simulation Parameters

Parameters

Value

fetch / issue / decode/ commit width

8 instructions each

fetch queue / speed

32 instructions / 1x

branch prediction perfect branch predictor
ROB size 512 entry

instruction queue size 256 entry

LSQ size 64 entry

integer ALUs/multi-divs / memory ports 8/2/2

floating point ALUs / multi-divs 472

functional unit latencies

INT: mul 3, div 20, all others 1
FP: adder 2, mul 4, div 12, sqrt 24

memory bus width / latency

8 bytes / 80 and 8 cycles for the first and inter chunks

inst. / data TLBs

128 entry / 32 entry in each way, 8KB page size, fully-

assoc

iative, LRU, 28-cycle latency

L1 caches

64KB

2 cycle for the data, write-back

, 4-way, 64B blocks, LRU, 1 cycle latency for the inst/

L2 unified cache

4MB,

8-way, 128B line block, LRU, 12 cycle latency

178

50% reduction of the number of register file read ports with DWQ

16R/8W B 8R/8W B 8R/8W/8DWQ B 8R/8W/16DWQ B 8R/8W/32DWQ

Normalized IPC

ammp applu equake lucas mesa bzp twolf gce mcf vortex Avg

Benchmarks

Figure 8. Theimpact on IPC of halving the number of read ports when using an delayed write queue.

In this experiment 8-, 16-, and 32- entry DWQs were used. A subset of benchmarks is shown in this graph, but the average num-
ber was obtained from the entire benchmark suite.

50% reduction of the number of register file read ports with OPB and OPRQ

B 16R/8W E 8R/8W [8R/8W/SOPB [18R/8W/160PB H 8R/8W/320PB

100% 1
95% -
90%
85% -
@]
S 80% -
g
5 75% 7
£
2 70% - r
65% -
60% -
55% - ‘
50% -
ammp applu equake lucas mesa bzp twolf gce vortex Avg
Benchmarks

Figure 9. Theimpact on I PC of halving the number of read portswhen using an operand pre-fetch buffer.

In this experiment 8-, 16-, and 32-entry OPBs were used with 16-, 32-, and 64-entry OPRQs respectively. The OPRQs were
aways twice the size asthe OPBs. We assume an 8 issue machine. A subset of benchmarks are shown in this graph, but the aver-
age number was obtained from the entire benchmark suite.

179

50% reduction of the number of register file read ports with OPB, OPRQ and DWQ

B 16R/8W E 8R/8W [8R/8W/OPB/8DWQ [8R/8W/OPB/16DWQ B 8R/8W/OPB/32DWQ

90% -

85% -

80% -

75% -

Normalized IPC

ammp

applu equake

lucas mesa

bzip twolf gce mcf vortex

Benchmarks

Figure 10. Theimpact on I PC of halving the number of read ports when using a DWQ combined with an OPB/OPRQ.

In this experiment a 16-entry OPB and 32-entry OPRQ, and 8-, 16-, and 32-entry DWQs were used. A subset of benchmarks was
shown in this graph, and the average number was obtained from the entire benchmark.

OPRQs having twice as many entries as the OPB. The
experimental results indicate that 8-, 16-, and 32-entry OPBs
reduce the performance loss by about 6%, 15%, and 33%
(black arrows at right in figure) compared to a system with just
an 8-read port register file. The experiments also show a
straight 25%, 22%, and 18% performance loss against 16-read
port register file. There is some improvement to be had by
using 32 OPBs rather than 16. However, considerations of
access time, energy, and area overhead, mean we will limit
ourselves to a 16-entry OPB with a 32-entry OPRQ for the rest
of the experiments: it is necessary that the impact of the
auxiliary structuresis small.

The delayed write queue achieves quite a significant
performance improvements compared to just using the OPBs
with OPRQs. However, we can improve the performance by
combining both OPB/OPRQ and DWQ techniques. The
combination is more than additive for the following reason:
The performance limit of the OPB technique in the reduced
read ports situation was mainly caused by lack of the available
read ports. The OPRQ can pre-fetch operands only if there
exits an unused register read port. But we have already reduced
the number of read ports. This increases the register read port
traffic, and reduces the chances of accessing an unused read
ports by the OPRQ. However, the DWQ techniques frees up
read ports, because the DWQ read ports take place of the
register file read ports. This gives the OPRQ more
opportunities to pre-fetch operands through the available
register file read ports.

In Figure 10, we present the impact on IPC when we employ
both the OPB/OPRQ and the DWQ techniques. In this

180

experiment, we again used a 16-entry OPB with a 32-entry
OPRQ. The experimental results indicate that 8-, 16-, and 32-
entry DWQs when combined with the OPB/OPRQ reduce the
performance loss by about 93%, 96%, and 99% (black arrows
at right in figure) when compared to just an 8-read port register
file. The experiments also show just a 2%, 1%, and ~0%
performance loss against a 16-read port register file.
Furthermore, this combined technique shows about a 15%,
11%, and 8% IPC improvements against the DWQ only
technique, illustrating that the OPB technique is quite effective
even when the number of DWQ entriesis small.

Figure 11 shows the IPC impact of reducing write ports by 2 (a
25% reduction in the number of write ports). In this
experiment, we used 16 read ports with 6 write ports and 24-,
and 48-entry DWQs. We also show the IPC impact of halving
the number of read ports with 6 write ports. The experimental
results indicate that 24-, and 48-entry DWQs reduce the
performance loss by 57% and 74% (black arrows at right in
figure) compared to a 16-read/8-write port register file. The
straight performance |osses compared to a 16-read/8-write port
file are 3% and 2%. The results also show that a 24-entry
DWQ with the 16-entry OPB reduce the performance loss by
81% compared to an 8-read/6-write port register file and 4%
reduction against 16-read/8-write port register file.

The reduced number of ports gives us a faster, smaller, and
lower power register file, which, in turn, has the potential to
improve the clock rate. If we assume that the register fileisin
the critical path we can compare the impact with another
metric — instructions per second (IPS). The detailed access

25% reduction of the number of register file write ports with DWQ

B 16R/8W B 16R/6W [0 16R/6W/24DWQ [16R/6W/48DWQ

100% 7
95% | iT
90% | |
85% |]
O
T 8% o
)
S 75%
£ |
S 70% | | | B | | | | | B |
z | | N | N N N N N | N
65% 4 []] A]]] N]]]
60% - =
55% A |
50% +-L L L L L L L L L L L
ammp applu equake lucas mesa bap twolf gce mcf vortex Avg
Benchmarks

Figure 11. The I PC impact of reducing the write portsby 2 — a 25% reduction in write ports.

In this experiment a 24- and a 48-entry DWQ were used. A representative subset of benchmarks was shown in this graph, and the averag

number was obtained from the entire benchmark.

memory components access time (ns) energy (nJ) area (cnv'2)
512-entry 16-readB-write register file 2.9 15.5 0.88
512-entry 8-readB-wnite register file 1.8 7.4 0.40
512-entry 8-readb-write register file 1.6 6.2 0.29
16-entry 8-readB-write fully assoc. OPB 2.0 2.2 0.07
16-entry 8-readBwrite fully assoc DWQ 2.0 2.2 0.07
16-entry 8-readBwrite DWQ 0.8 2.1 0.05
24-entry 8-readBwwrite DWQ 0.9 2.3 0.08
32-entry 8-readB-write OPRQ 0.7 0.8 0.01

Table 2. Accesstime, energy, and area estimation of memory components using our modified CACTI 3.0 with 0.18um technology.
We modified CACTI to make it estimate access time, energy, and area of small memory structures such as register files, the DWQ, and the

OPRQ, which do not require tag memory structures.

time, energy, and area cal culations will be discussed in Section
5.3.

5.3 Impact on Energy and accesstime of
reducing the number of ports

Table 2 shows access time, energy, and area estimation of the
auxiliary memory structures for our microarchitectural
modification of the register file required to support the reduced
port register files. We used a modified version of CACTI 3.0
[13] and assumed 0.18um technology. In particular, we
modified CACTI! so that it can estimate the access time,
energy, and area of small memory structures such as a register
file, the DWQ, and the OPRQ, which do not require tag
memory. We assume that the register file has 512 registers
with 16-read/8-write ports as our reference baseline [7]. We
have two options for the DWQ. We can implement it with a

181

fully associative memory to avoid complicating the address
broadcast bus. Or we can implement it with a regular memory
structure with the broadcast bus. Our figures reflect the first
choice. For the OPB, we assume that it has an 8-read/8-write
fully associative memory with 16 entries. We also assume that
each entry of the 16-entry OPRQ has 16 hits.

Table 3 shows the access time, energy, and area impact of
reducing the number of read ports by half. All results are
normalized against those of 512-entry register file having 16-
read and 8-write ports. These results show that we can improve
access time, energy, and area overhead with the proposed
techniques. The configuration that impacts the performance
least has 8-read and 8-write ports with a 16 entry DWQ, a 16
entry OPB, and a 32 entry OPRQ. It shows just a ~1% loss. If
we examine the savings (see the last but one line of Table 3)
we see that we are able to build a register file that has the
performance of a 16-read and 8-write port file, but that permits

register file architectures access time energy area
512-entry 16-readB-write register file 100% 100% 100%
512-entry 8-readB-write register file 62% 48% 45%
512-entry 8-readA-write register file 55% 40% 34%
8-readB-write with 16 OPB 32 OPRQ 68% 67% 54%
8-readB-write with 16 OPB 32 OPRQA6 DWQ 68% 81% 60%
8-read6-write with 16 OPB 32 OPRQA24 DWQ 68% 69% 50%

Table 3. Accesstime, energy, area impacts of reducing read and write ports
0 obtain access time, we used the lowest access time among the memory structures for “with 16 OPB / 32 OPRQ” and “with

6 OPB / 32 OPRQ/ 16 DWQ" casesin Table 3.

a ~47% increase in clock speed (1/access time savings), while
reducing the energy per access by 20% and saving 40% in area.
The area savings also has the potential to reduce the global
interconnect between other components.

6. CONCLUSION AND FUTURE WORK

In this paper, we develop two techniques for reducing the
number of register file ports without impacting | PC noticeably.
The techniques are based on: 1) a delayed write-back queue;
and 2) an operand pre-fetch technique comprised of an operand
pre-fetch buffer and request queue. We described the
implementations of both techniques. They rely on the addition
of small auxiliary memory structures (DWQ, OPB, and OPRQ)
to reschedule accesses to the register file so that the maximum
number of ports is rarely needed. These structures further
reduce the need for ports by supplying recently written register
values directly to the processor pipelines.

There are several follow-up pieces of research that can be
done. First, the effect of the techniques on timing, and hence
instructions per second, could be made by including more
details about technology. Second, the effect of using real
branch predictors could be studied. Our expectation is that
using an imperfect branch predictor reduces the pressure on
register ports, because of the bubbles introduced by the
mispredictions. Our proposal may allow one to exploit this to
further reduce ports. There would also be more chances to pre-
fetch operands if we have less use of the register ports. Third,
one could use our delayed write back and operand pre-fetch
techniques to improve performance for register files that
require multicycle accesses. The delayed write-back queue and
operand pre-fetch buffer are small memory structures that can
be accessed in a single cycle, which means that multiple-cycle
register file accesses can be replaced with accesses to a fast
single-cycle delayed write-back queue or operand pre-fetch
buffer. Running the register file slowly may alow more
savingsin energy and size. Unlike the hierarchical register file
approach, such a solution does not have any coherence
problems.

References

[1] Baasubramonian, R., et al. Reducing the complexity of the
register filein dynamic superscalar processors. Proc. of the

34th Int. Symposium on Microarchitecture (MICRO 34), Dec.
2001.

[2] Borch, E., et a. Loose loops sink chips. Proc. of the 8th Int.
Symposium on High Performance Computer Architecture,
Feb. 2002.

[3] Burger,D.,and T. Austin. The SimpleScalar Toolset, Version
2.0. Tech. Rept. TR-97-1342, Univ. of Wisconsin-Madison,
June 1997.

[4] Compag Computer Corporation. Alpha 21264 microprocessor
hardware reference manual. July 1999.

[5] Cruz, K., et a. Multiple-banked register file architectures.
Proc. of the Int. Symposium on Computer Architecture, Jun.
2000.

[6] Diefendorff, K.,. Compaq chooses SMT for Alpha.
Microprocessor Report, Dec. 1999.

[7] Emer, J.,. EV8: The post-ultimate Alpha. Keynote at Int.
Conference on Parallel Architecture and Compilation
Techniques, Sep. 2001.

[8] Ernst, D., et al. Efficient dynamic scheduling through tag
elimination. Proc of the Int. Symposium on Computer
Architecture, May 2002.

[9] Farkas, K., et a. Register file design considerationsin
dynamically scheduled processors. Proc. of the 2nd Int.
Symposium on High Performance Computer Architecture,
Jan. 1996.

[10] Gonzalez, A., et . Virtual-physical registers. Proc. of the 4th
Int. Symposium on High Performance Computer
Architecture, Feb. 1998.

[11] Park, I., et. al. Reducing register ports for higher speed and
lower energy. Proc. of the 35th Int. Symposium on
Microarchitecture (MICRO 35), Nov. 2002.

[12] Preston, R., et a. Design of an 8-wide superscalar RISC
microprocessor with simultaneous multithreading. 1SSCC
Digest and Visuals Supplements, Feb. 2002.

[213] Shivakumar, P., et a. Anintegrated cache timing, power, and
areamodel. WRL Research Report, Feb. 2002.

[14] zalamea, J., et al. Two-leve hierarchical register file
organization for VLIW processors. Proc. of the 33th Int.
Symposium on Microarchitecture (MICRO 33), Dec. 2000.

182

