
Abstract
Multiprocessing is already prevalent in servers where

multiple clients present an obvious source of thread-level
parallelism. However, the case for multiprocessing is less
clear for desktop applications. Nevertheless, architects are
designing processors that count on the availability of
thread-level parallelism. Unlike server workloads, the pri-
mary requirement of interactive applications is to respond
to user events under human perception bounds rather than
to maximize end-to-end throughput. In this paper we report
on the thread-level parallelism and interactive response
time of a variety of desktop applications. By tracking the
communication between tasks, we can focus our measure-
ments on the portions of the benchmark’s execution that
have the greatest impact on the user. We find that running
our benchmarks on a dual-processor machine improves
response time of mouse-click events by as much as 36%, and
22% on average—out of a maximum possible 50%. The
benefits of multiprocessing are even more apparent when
background tasks are considered. In our experiments, run-
ning a simple MP3 playback program in the background
increases response time by 14% on a uniprocessor while it
only increases the response time on a dual processor by 4%.
When response times are fast enough for further improve-
ments to be imperceptible, the increased idle time after
interactive episodes could be exploited to build systems that
are more power efficient.

1. Introduction
Does multiprocessing make sense on the desktop?

There is anecdotal evidence regarding the positive effect of
multiprocessing on the “responsiveness” of interactive

applications. Intuitively, the premise makes sense: sudden
bursts of background activity can be handled concurrently
with the foreground task and individual processes can be
sped up if they are composed of multiple threads. In this
paper we investigate whether multiprocessing can indeed
affect the user-perceived response time—the time it takes
for the computer to respond to user initiated events—of
interactive desktop applications. The primary questions that
we deal with are the following:
• How much do threads run concurrently in interactive

desktop applications?
• Does concurrency translate into improved interactive

performance (response time)?
These questions are particularly important for proces-

sor designers who are considering techniques that exploit
thread-level parallelism, such as simultaneous multithread-
ing (SMT) [13] and single chip multiprocessing (CMP) [7].
To date, most research in this area has used either synthetic
workloads (e.g., concurrently running multiple SPEC
benchmarks) or server workloads [1][10][12]. Our results
show that the performance characteristics of these bench-
marks are very different from those of desktop workloads.
Although our measurements were made on a multiproces-
sor, we look at thread-level parallelism at the system (appli-
cation and OS) level, not at the microarchitecture level.
Thus our results are not particular to any specific architec-
ture for exploiting thread-level parallelism.

Over the past years, multiprocessors have moved from
the server segment to workstation users and are now enter-
ing the desktop arena as well. Recently, Apple Computer
made dual PowerPC based machines standard across most
of its desktop PowerMac line [16]. Moreover, processors
capable of executing multiple instruction streams concur-
rently will be readily available in the near future. SMT- and
CMP-based products have already been announced
[3][4][15] and the cost of existing multichip multiprocessors
have been decreasing steadily [16].

Figure 1 illustrates the machine utilization and idle time
characteristics of 52 desktop workloads across three operat-
ing systems (Windows NT, BeOS, and Linux) running on a
quad-processor machine (using data from [6]). Machine uti-
lization is a measure of how effectively a machine’s com-
puting resources are exploited and is 100% if all processors

Thread-level Parallelism and Interactive
Performance of Desktop Applications

University of Michigan
1301 Beal Ave.

Ann Arbor, MI 48109-2122
+1-734-764-0203

Intel Microprocessor Research Lab
5350 NE Elam Young Parkway
Hillsboro, OR 97123
+1-503-696-3154

Krisztián Flautner
manowar@engin.umich.edu

Rich Uhlig
richard.a.uhlig@intel.com

Trevor Mudge
tnm@eecs.umich.edu

Steve Reinhardt
stever@eecs.umich.edu

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to

sion and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1

Copyright © A.C.M. 2000 1-58113-317-0/00/0011...$5.00

for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than

republish, to post on servers, or to redistribute to lists, requires prior specific permis-

(212) 869-0481, or permissions@acm.org.
ASPLOS 2000 Cambridge, MA Nov. 12-15 , 2000
Thread level parallelism and Interactive performance of desktop applications - ASPLOS 2000 August 21, 2000 1 of 10

129

in the system are utilized. It would be difficult to make a
case for multiprocessing for desktop workloads based on the
presented machine utilization data. Very few of the work-
loads exceed 25% machine utilization, suggesting that for
the most part, only one out of the four available processors
is exercised. Some of the benchmarks exhibit even lower
utilization in the 5% to 10% range, suggesting that a single
processor is more than powerful enough for running these
workloads. What is the need for multiprocessing when a
single processor seems to be adequate?

The problem with the machine utilization metric is that
it weighs all parts of the benchmark’s execution equally.
From the metric’s point of view, generating a page of output
on the screen is as important as the idle period when the
user is consuming the data (think time) and the processor is
doing no useful work. We define idle time as the percentage
of time all processors in the machine are idle simulta-
neously. Machine utilization can only be used to accurately
measure the effects of concurrent execution if idle time dur-
ing the benchmark run is close to zero.

As the figure shows, the amount of idle time in desktop
applications can be very large. In some cases idle time
amounts to more than 90% of total execution time. This
high ratio should not be unexpected since interactive appli-
cations run at the rate at which the user interacts with them,
which is determined by human cognition and motor skills
and includes significant think time. The high proportion of
idle time can be obscured by the use of automated bench-
marks, such as Sysmark 98 [17] or Winstone 99 [18], that
perform each operation as soon as the previous operation
completes without taking think time into account. The auto-
mated benchmarks in Figure 1 have an average of 12% idle
time versus 64% for the realistic benchmark runs.

To get around the limitations of the machine utilization
metric, we define a new metric called thread-level parallel-
ism (TLP). TLP is the machine utilization over the non-idle
portions of the benchmark’s execution. This definition side-
steps the problems of the original metric and allows us to

use more realistic desktop workloads that can include a lot
of idle time. Intuitively, TLP is a metric of speedup due to
concurrent execution on the non-idle portions of the work-
load (Section 3).

The most relevant metric for interactive applications is
not the overall throughput but response time: the amount of
time it takes for the computer to respond to a user initiated
event. These periods are also referred to as interactive epi-
sodes. We focus our measurements on the interactive epi-
sodes by tracking communication between tasks in the
kernel (Section 3.1). Figure 2 illustrates a sample TLP trace
where the ranges corresponding to interactive episodes have
been highlighted.

Our response time measurements are detailed in Sec-
tion 4. We find that, while desktop applications can incur
more than 90% idle time during execution, running our
benchmarks on a dual-processor machine provides a 22%
average improvement in application response times. In Sec-
tion 4.4, we investigate the effects on response time of a
concurrently running MP3 playback application. Here, the
dual-processor machine improves response time by 29% on
average. Thus, multiprocessing on the desktop can be a via-
ble means of improving the user experience.

2. Previous work
Various papers have dealt with the characterization of

desktop applications [9][2][5]. In [5], Endo et al. performed
a detailed analysis of interactive performance in a unipro-
cessor Windows NT environment. Our methodology has
been influenced by their design choices and their definitions
of think and wait time.

Hauser et al. [8] have approached the role of threads in
interactive systems by analyzing the design patterns in two
threaded object-oriented environments. Their analysis
focused on the use of threads for program structuring
instead of run-time statistics. However, their conclusion that
most threads are used for programmers’ convenience and
few for exploiting concurrency is echoed by our results.

In their study of the characteristics of desktop applica-
tions [9] Lee et al. observed that most of the instructions are
executed from a single dominant thread. In our experience
TLP can vary greatly based on the choice of OS and work-
loads. In this study we show that multiprocessing can have
beneficial effects even on standard desktop workloads.

Our previous investigations into the concurrency char-
acteristics of desktop applications have provided a high-
level view of a broad set of workloads on three operating
systems: Windows NT, Linux, and BeOS [6]. These results
showed that while most workloads under BeOS and Win-
dows NT use a relatively large number of threads, the actual
concurrency derived from them is limited and heavily
dependent on the workload and the operating system. In this
study we expand on these results by focusing in more detail
on interactive applications under Linux. On a previous ver-
sion of Linux that we studied, applications exhibited very
little concurrency (TLP of 1.0-1.13). This was partially due
to the fact that many of the applications did not use kernel
threads to work around reentrancy bugs in the C library, and
to the heavy use of the global kernel lock in the 2.2.13 ker-
nel. However, less than a year later, due to a more recent

FIGURE 1. Machine utilization and idle time of 52 workloads

The figure shows machine utilization and idle time of 52 workloads on a
quad-processor machine. The automated benchmarks were driven by a GUI
automation tool (e.g., Visual Test), while the realistic workloads were run
by a human.

0%

25%

50%

75%

100%

Benchmarks

Machine Utilization

Idle time

Automated
benchmark runs

"Realistic"
benchmark runs
Thread level parallelism and Interactive performance of desktop applications - ASPLOS 2000 August 21, 2000 2 of 10

130

kernel (2.3.99-pre3) and an updated C library, the average
TLP of our Linux benchmarks has increased to 1.27.

3. Metrics and methodology
The principle metrics that we are interested in are idle

time (Idle), thread-level parallelism (TLP), and response
time (TR). Idle time is the fraction of measurement time
when all of the processors in the system are executing the
idle task. Thread-level parallelism, on the other hand, is a
measure of how many threads are executing concurrently
when the machine is not idle. These two quantities provide a
more accurate insight into workload characteristics than
machine utilization (MU) alone. While machine utilization
can give an accurate picture of the concurrency of the sys-
tem if idle time is close to zero, it can obscure the presence
of concurrent execution in the case of interactive applica-
tions, where idle time is high. Response time (TR) is the
length of time between the initiation and completion of an
interactive event, which we also refer to as the length of an
interactive episode.

The following equations precisely define machine utili-
zation (MU), the TLP metric and their relationship.

(EQ 1)

We use the variable ci to denote the fraction of time that
exactly i threads execute concurrently. The value of i ranges
from 0 to n, where n is the number of processors in the
machine. Equation 1 shows the formula for machine utiliza-
tion, while Equation 2 shows the computation for TLP. The
variable c0 represents the fraction of time that the machine
was idle. Correspondingly, idle time is defined as the frac-
tion of time when all processors in the machine were idle
simultaneously.

(EQ 2)

Equation 3 relates machine utilization to TLP, which in
essence is the machine utilization over the non-idle portions
of the program execution. Note that the result is scaled by n
since machine utilization ranges from 0 to 1 while TLP
ranges from 1 to n.

(EQ 3)

In certain cases, we use a subscript to show the range
on which our metrics were computed. In particular, TLPie
gives TLP for the interactive episodes and TLPrun shows the
thread-level parallelism for the entire benchmark.

Our measurement technique relies on intercepting
thread switch events in the OS kernel and keeping an accu-
rate trace of the executing threads on all of the CPUs in the
system. Since the timestamp counters are synchronized
across all processors in the machine, we use the time stamps
associated with thread switch events to compute how much
the processors in the system execute concurrently. We have
confirmed that the counters under Linux are synchronized to
within 100 cycles, well below the microsecond resolution
we desired. This methodology allows us to monitor the exe-
cution of all threads in the system, not just the ones in the
running benchmark, and takes all scheduling and synchroni-
zation overhead into account.

Figure 3 shows the hardware and software configura-
tion of our benchmarking environment.

3.1 Detecting interactive episodes
The beginning of an interactive episode is initiated by

the user and is usually signified by a GUI event, such as

MU

cii
i 1=

n

∑
n

----------------=

TLP

cii
i 1=

n

∑
1 c0–
----------------=

TLP nMU
1 c0–
--------------=

FIGURE 3. Benchmarking environment configuration

Hardware configuration Software configuration
Dell Precision WorkStation 410

Two 450Mhz Pentium II
512K L2 Cache
512M RAM

Matrox Millennium II AGP 4M

Linux Mandrake 7

Modified 2.3.99-pre3 kernel
XFree86 3.3.6
Helix GNOME 1.2

glibc 2.1.3 C library
FIGURE 2. Segment of the TLP trace of the Ghostview benchmark

5.7 5.8 5.9 6.0 6.1 6.2 6.3

.....................

.

.

...

..

..........

..

..........

..

...

.

.

.

.

....

.

..

.

............

.

..

.

.

.

.

.

.......

..

..

..........

.

...........

.

.

.

.

.

.

.

.

...

.

..

.

..
.

.

.

..

.

.

..

.

.

..

.

.

..

.

..

.

.

.

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

..

..

..

.

...

.

.

..

..

.

..

.........

.

..........

.

...........

.

.......

.

.

...

.

.........

.

...

.

.......

.

...........

.

.......

..

..

.

.........

.

.

.

.

........

.

...........
.

.......

.

...

.

..

.

........

.

..........
.
.

...

.

.......

.

...

.

.

...

.

..

.

.......

.

.......

.

....

.

...........

.

..

.

....

.

.

..

.

.

..........

.

...........

.

...

.

........

.

...

.

...

.

.......

.

...........

.

...

.

...........

.

...

.

...

.

...
.

...

.

......

..

.

.

.

.

.

...

.

..

.

.

.

.

...

.

.....

.

......

..

.

.

...

.

.

.

.

.

.

.

.

.

....

....

.

...

......

.

..

.

.

.

...

.

....

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

..

.

...

....

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

....

.

...

..

...

.

.

.

.

..

.

.

.

.

..

.

....

.

.

.

.

.

.

.

.

.

.

...

.

.

.

............

....

..

...

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

...

.

..

.....

..

.

.....

.

......

.

...

.

..

.

.........

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.............

.

.

.

.

.

.

.

.

.

.

....

.

...

.

.....

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.....

...

................
..

..

.

..

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..................

.

.

.

.....

..

.

......

.

...

.

..

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.........

..

..

..

....

.

...

.

..

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

........

.

...

..

.

.

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

.....

.

...

.

...

.

.................
..
...

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

..............

.

.

.

...........
.

..

........

.

...

.

..

..

.

...

.

.............................

.

..........

...

.

...

.

..

.....

.

.

.

..

.

..

.

..

..

.

.

.

...

.

.

...

..

..

..

..

..

...

.

..

..

..

..

..

..

..

..

..0

1

2

This figure contains a portion of the TLP trace of the Ghostview benchmark. The light areas correspond to the interactive episodes. In this
trace, there are two interactive episodes: a short one from 5.772s to 5.775s and a long one from 5.802s to 6.205s. The y axis corresponds to
the measured TLP, while the x axis specifies the elapsed time in seconds.
Thread level parallelism and Interactive performance of desktop applications - A

131

SPLOS 2000 August 21, 2000 3 of 10

pressing a mouse button or a key on the keyboard. Finding
the end of an episode is more difficult since there is no event
that automatically gets generated when the computer is done
responding. One approach is to assume that user initiated
events are CPU bound and to define the end of an episode as
the beginning of a relatively long idle section [11]. The
length of an interactive episode is thus the elapsed time
between a user initiated event (e.g., a mouse click) and the
beginning of the next idle period that is longer than a pre-
defined threshold. There are two problems with this
approach:
• Episodes that are I/O bound may be terminated prema-

turely if the wait time exceeds the idle threshold.
• There is a significant latency between the end of an inter-

active episode and its classification, complicating on-
line use of episode information (e.g., for scheduling).
We developed a more robust episode detection mecha-

nism to alleviate these problems. To find interactive epi-
sodes, we keep track of the set of tasks that communicate
with each other as a result of a user-initiated GUI event.

The start of an interactive episode is signified by the
GUI controller (X server in our case) sending a message
through a socket to another task. When this happens both
the GUI controller and the receiver of the task are added to
what we refer to as the task set of the episode. If the mem-
bers of the task set communicate with non-member tasks,
then those tasks are also added. The end of the episode is

reached when all the following conditions are met for tasks
in the task set:
• No tasks are executing.
• Data written by the tasks have been consumed.
• No task was preempted the last time it ran (i.e., all gave

up time on their own by blocking in a system call).
• No tasks are blocked on I/O.

Figure 4 illustrates two typical trace fragments from the
Ghostview benchmark. In the first case, four processes com-
municate with the server as the result of a mouse-click
event. Note that when a task gives up time it usually does so
in the poll or select system calls which signifies that the task
is ready to process more data.

The second trace fragment illustrates the interaction
between the X server and a client that is continuously send-
ing data to be displayed. In this case, the Ghostscript ren-
derer is running continuously on CPU 0 and sends the data
to the display whenever it has completed rendering a seg-
ment. The communication is unidirectional and asynchro-
nous and the resulting parallelism is asymmetric. In our
experiments symmetric utilization of both processors was
rare (i.e., when the TLP is 2 for an extended period of time).

Most applications under UNIX communicate using
sockets, signals, and pipes. In particular, the X server uses
sockets to communicate with its clients. We do not track
interactions via other methods such as System V IPC and
shared memory since our benchmarks do not use them. By
FIGURE 4. Trace fragments illustrating tasks and communication events

CPU 1

Two typical trace fragments are shown in this figure from the Ghostview benchmark. The first picture shows communication events
between tasks after a mouse button was pushed, while the picture on the right corresponds to a complex image being rendered on the
screen. The letter R to the right of the pid shows that the task was preempted (the task is ready to execute), a W indicates that it is waiting
for an event and gave up time on its own (it is waiting for an event to complete). The arrows indicate the communication flow between the
tasks. Task pids in the figure correspond to the following: 757 - X server, 778 - sawmill (window manager), 895 - gnome-terminal, 889 -
tasklist_applet, 2088 - Ghostview (gv), 2090 - Ghostscript (gs). Note that Ghostview uses Ghostscript to render pdf and postscript data. In
these examples, when a task is waiting for an event, it is blocked in the select or the poll system call.

CPU 0

895

757

757

757778

778

889
895
757

2088

757

R

R

R

W

W

W

W

W

W

W

CPU 1CPU 0

757

7572090

757

W

W

W

757 W

757
W

757 W

757 W
Thread level parallelism and Interactive performance of desktop applications - ASPLOS 2000 August 21, 2000 4 of 10

132

tracking the communications between the tasks, we are able
to determine which tasks have an effect on interactive per-
formance. Unlike other operating systems (e.g., Windows
NT), Linux does not differentiate between threads and pro-
cesses. Threads are implemented using regular processes
and the clone system call. We use the name “task” as a
synonym for both threads and processes.

The implementation that performs the tracking is as
non-invasive as possible. The difficulty was not in the
actual implementation but in finding all the parts of the ker-
nel that needed to be tracked. Currently we track communi-
cations through the following system calls:

kill, pread, pwrite, read, readv, recv, recvfrom, rcvmsg,
send, sendmsg, sendto, write, writev

We instrumented each of these system calls to emit a trace
of the signals, inodes, and sockets that they are accessing.
The socket information is output instead of the inode num-
ber, when a socket is accessed through an inode. To be able
to match read and write requests through socket pairs, we
use the socket’s pair (sock->sk->pair) on a write and the
read socket itself on a read event. Currently we track only
communications through UNIX sockets since this is the
only socket type that is local to the machine. One could
extend this methodology to track communications through
other types of sockets if the communicating programs are all
local to the machine. However, we have seen no need for
this extension so far.

The primary reason for tracking signals is that the
thread library (LinuxThreads) uses signals to implement
synchronization between threads. By looking at the signal
activity we can determine how threads communicate
through condition variables, mutexes, and locks. The two
functions that needed to be instrumented are
handle_signal and send_sig_info. An alternative to
this approach would have been to instrument the thread
library; however, our current approach is more generic and
has lower overhead.

To determine when tasks are blocked on I/O, we instru-
mented the schedule function to record the reason why it
was called. If it is called from a part of the kernel that is
related to I/O (such as the read and write system calls), then
we assume that the task is blocked while waiting for an I/O
event to complete. Since there is no predefined way in

Linux to find which system call caused a transition to the
kernel, we instrumented key system calls to put their id in a
field of the executing task’s task_struct. Once execution
gets to the schedule function, our code looks at this field
and outputs the task’s reason for giving up time.

An attractive feature of our methodology is that the
ends of interactive episodes can be found immediately,
without having to wait first for an arbitrary amount of time
to elapse. This information could be used on line by the ker-
nel to make better scheduling and service quality decisions.

3.2 Benchmarks
Table 1 gives a short description of our benchmarks and

summarizes their high-level characteristics. The data pre-
sented in this paper are averages of seven benchmark runs in
each configuration. All benchmarks were run by a live user.
While we aimed to repeat each run as accurately as possible,
there are slight variations between the runs. All the signifi-
cant events (e.g., mouse clicks, text entry) were performed
in the same order during each benchmark run. However, the
exact path of mouse movement (and therefore the interac-
tive episodes corresponding to them) and the amount of
time between events varies from one run to the other.

All our applications show significant amounts of TLP
and a high fraction of idle time. It is likely that the idle time
of the application executing on an actual user’s desktop
would be higher since although we interacted manually, we
made no efforts to consume all the information presented by
the program. The overall TLP of our applications are similar
to what we measured during the interactive episodes. How-
ever, in all cases the TLP in interactive episodes was higher
than the average for the entire run of the benchmarks.

4. Response time results
One way of quantifying an application’s performance is

to measure the time it takes to complete a run of the bench-
mark. This approach works for throughput-oriented bench-
marks, however it runs into difficulties when one tries to
measure interactive applications. Nonetheless, benchmarks
such as Sysmark 98 [17] and Winstone 99 [18] attempt to
quantify the performance of interactive applications by turn-
ing them into throughput-oriented benchmarks. They
accomplish this by using a software driver that clicks
TABLE 1. Linux benchmark descriptions and characteristics

Benchmark Version Description
Dual processor Uniprocessor

TLPie TLPrun Idlerun Idlerun

Acroread 4.0 Acrobat PDF file viewer 1.20 1.19 88% 87%

FrameMaker 5.5.6beta Document editor 1.35 1.33 93% 93%

Ghostview 3.5.8 PostScript and PDF file viewer 1.42 1.39 84% 84%

GIMP 1.1.22 The GNU Image Manipulation Program 1.26 1.24 88% 84%

Netscape 4.7 Web browser 1.34 1.28 90% 89%

Xemacs 21.1 patch 8 Text editor 1.26 1.21 93% 92%

Average 1.31 1.27 89% 88%
Thread level parallelism and Interactive performance of desktop applications - ASPLOS 2000 August 21, 2000 5 of 10

133

through these applications as quickly as possible and by
measuring the length of the end-to-end execution.

The problem with this approach is that in interactive
applications not all parts of the program’s execution are
equally important. The relevant metric is improvement in
response time (the time it takes to respond to a user-initiated
event) of critical episodes [5]. This time has also been called
“wait time,” to refer to the fact that during these periods the
user is actively waiting for the computer to complete the
task.

This section presents measured response times from
uni- and dual-processor machines. The first subsection com-
pares the performance of individual interactive episodes
while the second analyzes and compares aggregate statistics
from full benchmark runs. Section 4.3 further analyzes these
results in the context of user-perceptible improvement.
Finally, Section 4.4 repeats the initial experiments with an
added active background process (an MP3 player).

4.1 Individual episodes
We have noted that while the runs of our benchmarks

are similar to each other, they are not completely identical.
This poses problems when we attempt to compare two dif-
ferent runs to each other. We cannot just compare the aver-
age lengths of interactive episodes from one run to the other,
since the set of episodes in each run could be slightly differ-
ent. We overcame this problem by comparing only individ-
ual episodes that occur after the same mouse click in each
trace. These episodes are more repeatable than those caused
by other events, such as focus changes, and tend to have
longer response times.

To correlate mouse-click events with interactive epi-
sodes we modified the X server to write an entry into the
trace every time a mouse button is pressed. The postproces-
sor can then correlate interactive episodes that occur after a
marker. Table 2 summarizes the results of the response time
measurements for these episodes. The first column includes
the overall response time improvement for the mouse-click
episodes in the benchmark, while the rest of the columns
show the collected data and the response time improvement
for a few selected episodes. Note that, since our Xemacs
TABLE 2. Response time on a dual-processor and a uniprocessor machine

Average
response-time

improvement of
mouse-click

events

Selected episodes

Benchmark Episode description
Response time

(TR)
improvement

Dual processor Uniprocessor

TLPie TR (sec) Measured
TR (sec)

Predicted
TR (sec)

Acroread 15% Displaying successive
pages of a pdf file.

14% 1.21 0.119 0.138 0.144

17% 1.21 0.125 0.150 0.151

12% 1.15 0.231 0.261 0.264

FrameMaker 22% Visually manipulating a
FrameMaker document.

30% 1.43 0.296 0.425 0.422

20% 1.29 0.040 0.050 0.051

25% 1.41 0.022 0.029 0.031

27% 1.38 0.021 0.029 0.029

Ghostview 34% Displaying successive
pages of a pdf file.

36% 1.51 0.223 0.346 0.336

19% 1.29 0.455 0.562 0.586

36% 1.53 0.225 0.352 0.345

30% 1.47 0.403 0.578 0.593

32% 1.52 0.331 0.484 0.502

GIMP 19%

Pixelize 18% 1.37 0.456 0.553 0.623

Motion blur 8% 1.15 1.206 1.312 1.390

Sharpen 20% 1.33 0.408 0.511 0.541

Laplace edge-detect 15% 1.19 0.982 1.156 1.164

Undo 22% 1.38 0.118 0.152 0.164

Netscape 21%

Displaying simple
HTML pages from a
machine-local web
server.

24% 1.34 0.252 0.331 0.338

25% 1.42 0.096 0.127 0.137

20% 1.31 0.064 0.079 0.084

28% 1.44 0.085 0.118 0.123

Average 22%
Thread level parallelism and Interactive performance of desktop applications - ASPLOS 2000 August 21, 2000 6 of 10

134

workload was driven solely by keyboard interactions, we
were unable to compute response time improvement for it.

The results indicate that on our benchmarks response
time improved on a dual-processor machine by an average
of 22% (36% in the best case, 8% in the worst). The average
TLP for the episodes is 1.31, higher than the average for the
complete benchmarks, which is 1.27. Idle time during the
interactive episodes in all cases was zero or very close to it
(a few tenths of a percent).

To check our results we used the dual-processor num-
bers to estimate the uniprocessor run-time (Equation 4) and
then checked them against actual measured values. DP
refers to the response time (TR) and idle time (TIdle) on a
dual processor, while UP refers to the same measurements
on a uniprocessor machine.

(EQ 4)

The equation scales the non-idle portions of the episode
by the measured TLP and assumes that no scaling occurs on
the idle portions. This simple model predicts the uniproces-
sor episode lengths to within 4% on average (one run had an
error of 11% and for all others, error was under 7%). Given
that we made no special provisions to reduce experimental
variations (e.g., by turning off background daemons) and
that all traces were driven by a real user (instead of an auto-
mated script), we think that the error is within a reasonable
margin.

Most Linux applications are not threaded; concurrency
emerges from simultaneously running multiple processes.
The only applications from our benchmarks that actually
used threads (through the LinuxThreads API) were
Netscape and GIMP. These applications derived some TLP
by running intra-application threads concurrently. However,
most of the TLP was achieved by running the application
thread concurrently with the user interface threads: mostly
with the X server but also with the other GUI tasks (such as
the window manager, desktop applets, etc.). This contrasts
with our experience under Windows NT, where application
threads ran concurrently primarily with threads from the
System process, which includes device drivers and other
operating system threads [6].

4.2 All interactive episodes
In the previous section we looked at select episodes that

come after mouse clicks to figure out the response time
improvement. These episodes usually represent the heavy-
weight episodes during the benchmark runs and, while these
episodes usually make up the largest percentage of time dur-
ing the run, the number of short episodes dominates.

Table 3 shows the episode length distribution of our
benchmarks. Due to the large variance of episode lengths,
we separated the results into four categories. For each cate-
gory, the number of episodes that fall into it are given (per-
centage of episodes) along with the total amount of time
spent (as a percentage of total time in all interactive epi-
sodes). While the majority of the episodes are very short
and are in the few tenths of a millisecond range, only a

TR UP() TR DP() TIdle DP()–()TLP TIdle DP()+=
TABLE 3. Episode distribution (dual processor)

Benchmark
[0ms, 1ms) [1ms, 10ms) [10ms, 100ms) [100ms, inf)

% of
episodes % of time % of

episodes % of time % of
episodes % of time % of

episodes % of time

Acroread 92.69% 5.75% 4.11% 3.52% 1.13% 11.89% 2.08% 78.85%

FrameMaker 72.10% 2.87% 17.60% 6.98% 8.58% 42.11% 1.72% 48.04%

Ghostview 89.87% 2.24% 6.73% 2.22% 0.76% 6.7% 2.64% 88.85%

GIMP 87.93% 2.7% 10.19% 5.89% 0.32% 0.64% 1.57% 90.77%

Netscape 89.98% 3.56% 8.62% 13.88% 0.98% 31.43% 0.42% 51.13%

Xemacs 65.01% 4.78% 34.36% 86.01% 0.63% 9.21% 0% 0%
TABLE 4. TLP and episode length distribution (dual processor)

Benchmark
[0ms, 1ms) [1ms, 10ms) [10ms, 100ms) [100ms, inf)

TLPie avg. length TLPie avg. length TLPie avg. length TLPie avg. length

Acroread 1.38 0.25 1.19 3.47 1.20 42.76 1.18 153.66

FrameMaker 1.38 0.30 1.20 2.94 1.36 36.42 1.37 207.72

Ghostview 1.30 0.23 1.18 3.10 1.33 83.39 1.43 315.85

GIMP 1.43 0.17 1.22 3.28 1.35 11.49 1.26 328.83

Netscape 1.70 0.07 1.16 2.73 1.41 55.59 1.33 210.60

Xemacs 1.87 0.07 1.24 2.52 1.14 14.68 N?A N/A
Thread level parallelism and Interactive performance of desktop applications - ASPLOS 2000 August 21, 2000 7 of 10

135

small portion of the time is spent in episodes corresponding
to them. This makes sense given the orders-of-magnitude
variance in episode lengths. Examples of the short episodes
include:
• Moving the mouse and updating its position.
• Updating the appearance of the cursor.
• Handling window focus changes.
• Handling keyboard events.

Towards the right hand side of the table is the data cor-
responding to the heavyweight episodes that were the sub-
ject of our investigations in the previous section. Since in
the majority of our benchmarks most of the time is spent in
executing these kinds of episodes and most of them fall
above the perception threshold of the user, these are of pri-
mary importance for speeding up.

Table 4 gives the TLP and average length of interactive
episodes. The most significant observation is that in all
cases TLP is higher in the interactive episodes than the aver-
age for the entire run of the benchmark (see Table 1). This
matches with our observation in the previous section. More-
over, in all cases the interactive episodes appear to be very
CPU bound, with zero or close zero idle time.

Short episodes (less than one millisecond long) tend to
have the highest TLP. This should not be surprising since
these episodes usually perform an update of a few GUI
objects on the screen, which requires the tight interaction of
both the X server and the client. The TLP in the most used
category varies from one benchmark to the other. It is never
smaller than the overall average for the program but in some
cases it is smaller than the average for the interactive epi-
sodes.

While most time is spent executing episodes that fall in
the tenth of a second to over a second range, some last for
only a fraction of a millisecond. With episodes that are so
short, the question comes up whether there is any percepti-
ble improvement in responsiveness using two processors.

4.3 The perception threshold
We have shown that TLP can be exploited successfully

to reduce the response time of interactive applications. Once
the response time reaches a certain threshold, the user is not
able to detect any further improvement. What exactly that

threshold is depends on the event type and can vary from
one user to another. While its actual value is hard to quan-
tify, the perception threshold sets an upper bound for the
required performance.

Determining the exact length of an interactive episode
can also be problematic. Does an episode begin when the
user clicks the mouse button, or when that event is delivered
by the X server? We have taken the position that interactive
episodes begin when the event is delivered, since the X
server may need to wait for additional events—such as extra
mouse clicks to distinguish a double-click from single-click
or for a button release—before delivering the event. Our
measurements show that the delay between the hardware
event and event dispatch can vary from a few tenths to hun-
dreds of milliseconds. When considering an appropriate
perception threshold for a user, this extra delay may need to
be accounted for. We do not address this problem in this
paper.

Table 5 shows the number and fraction of time spent in
episodes that are above the perception threshold. The frac-
tion of time is expressed as the percentage of time in all
interactive episodes. Data is computed for two threshold
values, which were selected based on data from [2]. Given
either threshold, most of the time is spent executing epi-
sodes that fall above the perception threshold. Based on this
data, FrameMaker, Netscape, and Xemacs are the most
responsive applications. This correlates well with our expe-
rience; all three of these applications seemed to be very
responsive and we could not experience any qualitative dif-
ference between the dual-processor and uniprocessor runs
of these applications. We must note, however, that while
interactive episodes in Netscape were under the perception
threshold when accessing a web server on the local
machine, accessing servers on the Internet would certainly
show more episodes in the perceptible range due to network
latency. However, network latency is not something that
multiprocessing in the client can reduce.

While exploiting TLP reduces the average length of the
interactive episodes, it only causes a shift of an interactive
episode from above to below the perception threshold, if its
length on a uniprocessor does not greatly exceed the thresh-
old. None of the benchmarks had a significant shift in the
number of episodes when the perception threshold is set to
50ms, and only a few of our benchmarks’ episodes moved
TABLE 5. Episodes above the perception threshold

Benchmark

100ms threshold 50ms threshold

Dual processor Uniprocessor Dual processor Uniprocessor

% time # episodes % time # episodes % time # episodes % time # episodes

Acroread 79% 8 85% 9 89% 9 90% 9

FrameMaker 48% 2 49% 2 69% 5 75% 6

Ghostview 89% 12 95% 15 96% 15 96% 15

GIMP 91% 9 92% 9 91% 9 92% 9

Netscape 51% 4 63% 7 72% 10 73% 10

Xemacs 0% 0 0% 0 0% 0 0% 0
Thread level parallelism and Interactive performance of desktop applications - ASPLOS 2000 August 21, 2000 8 of 10

136

below the cutoff at the 100ms threshold (Acroread, Ghost-
View, and Netscape).

4.4 Effects of background activity
To round out our investigations, we wanted to know

what happens when a background process is executing
along with the interactive application. To gain some insight
into such workloads, we repeated our experiments with an
MP3 player running in the background. We used a very sim-
ple MP3 player called mpg123 (version 0.59r) along with
the esd sound daemon. The player lacks a graphical inter-
face and only does music playback—no visual effects. This
application is light-weight and exhibits very little concur-
rency. We measured 1.02 TLP and 95% idle time when run-
ning music playback by itself.

The results are presented in Table 6. The response times
are averages over all mouse-click events, as in Table 2. The
performance improvements due to two processors is more
significant than in our previous measurements. The average
improvement is 29%, in contrast to 22% without the back-
ground task. On a dual processor the work required for MP3
playback is mostly absorbed by the extra processor. How-
ever, on a uniprocessor the extra work cannot be off-loaded
and must be performed during the critical path, thus extend-
ing the lengths of the interactive episodes. Compared to our
previous results, the dual-processor episode lengths are
increased by an average of 4%, while the uniprocessor epi-
sode lengths are increased by an average of 14%.

The average TLP within the interactive episodes
increases to 1.36 while the average for the entire benchmark
run decreases to 1.23. The trend is the same as in our previ-
ous measurements without MP3 playback. However, in this
case the difference between TLPie and TLPrun is signifi-
cantly greater (the average TLPie is 1.31 and TLPrun is 1.27
when there is no MP3 playback in the background). The
reason for the greater difference is that MP3 playback is
periodic and has no inherent concurrency (it is not threaded,
just a single task), which affects TLP in two ways:
• It reduces idle time and the new non-idle portions have a

TLP of one.
• On existing non-idle periods, it increases TLP.

Since interactive episodes have very little idle time, TLP
goes up due to the concurrently running MP3 playback pro-
cess. On the non-interactive portions, the background appli-
cation reduces idle time and replaces the idle thread with a
single running application. Since all of our benchmarks are
dominated by idle time, the TLPrun of the applications is the
same or lower with MP3 playback in the background than
without.

5. Conclusions and future work
The fundamental question that this paper attempts to

illuminate is whether it is beneficial for a desktop user to
use a multiprocessor machine for everyday tasks. We have
shown that existing Linux workloads exhibit thread-level
parallelism, which translates into improvement of the user-
perceived response time of the applications. Using two pro-
cessors instead of one is a straightforward way to reduce
execution length in the critical path in our benchmarks by
8% to 36% (22% on average). Moreover, these improve-
ments represent 16% to 72% of the maximum reduction
achievable on a dual-processor machine (50%). Using two
processors can thus be an effective and efficient way of
improving interactive performance.

The average response time improvement on a dual-pro-
cessor machine increases to 29% with an MP3 player exe-
cuting in the background. Although the extra processor
eliminates most of the overhead of a background task, it
does not absorb it all. The average length of an interactive
episode increased by 4% due to audio playback (vs. 14% on
the uniprocessor). This result is consistent with the level of
TLP we found in interactive applications: we should expect
the response time to remain unchanged only if the second
processor is completely unused by the foreground applica-
tion.

For most of our applications, using more than two pro-
cessors is not likely to yield great improvements. This con-
clusion is supported by our previous experience on a quad-
processor machine, where the only workloads that had a
TLP of 2 or more were hand-parallelized or were batch jobs
[6]. Our current results show that most workloads have TLP
under 1.4, which implies that increasing the number of pro-
cessors would only be beneficial in less than 40% percent of
the time (i.e., the proportion of the episode where TLP is 1
TABLE 6. Response time improvement on dual-processor and uniprocessor machines with MP3 playback in background

Benchmark TLPie TLPrun
Response time
improvement

Response time increase
due to MP3 playback

Dual processor Uniprocessor

Acroread 1.25 1.19 23% 4% 15%

FrameMaker 1.40 1.20 29% 1% 13%

GhostView 1.46 1.34 38% 4% 10%

GIMP 1.32 1.23 23% 4% 14%

Netscape 1.39 1.24 31% 5% 16%

Xemacs 1.35 1.18 N/A N/A N/A

Average 1.36 1.23 29% 4% 14%
Thread level parallelism and Interactive performance of desktop applications - ASPLOS 2000 August 21, 2000 9 of 10

137

is not reduced). Even by making the optimistic assumption
that in all these episodes four threads could run concurrently
40% of the time, we can only expect an overall speedup of
20% on a quad-processor over a dual-processor machine.

In our opinion, our results indicate that the Linux kernel
and associated software have come of age as an SMP plat-
form. While thread-level parallelism can certainly be further
improved by removing uses of the global kernel lock, we
believe that the emphasis should now be on application
writers to refactor their programs with multithreading in
mind. Multiprocessing would become even more compel-
ling if TLP could be increased above 1.5.

Historically, uniprocessor performance has doubled
every 18 months. Given a TLP of 1.5, this means that the
lead time of a dual processor over an equivalent-performing
uniprocessor is about three quarters of a year. Given that
most interactive episodes in our measurements were shorter
than 500ms, in about three years these episodes will fall
under the 100ms perception threshold on a dual-processor
machine and in about four years it will be sufficiently fast
on a uniprocessor. On the other hand, the software four
years from now will likely increase its processing require-
ments.

In this paper we focused on the performance effects of
multiprocessing on interactive applications. However, at
some point in the future the decision whether to have multi-
ple thread contexts in hardware may have to be made on
some factors other than performance, such as energy and
power efficiency. If response time is below the threshold of
user perception, one can reduce energy and power consump-
tion by running each CPU at a lower frequency and voltage,
without degrading the user experience. Exploiting TLP to
reduce critical paths could enable further frequency and
voltage reductions.

Dynamic voltage and frequency scaling [11][14] also
requires algorithms that determine a priori which episodes
are fast enough and how fast to execute them. This is a
direction of our ongoing research. Our methodology of
tracking communications between tasks can be used to iden-
tify the performance critical parts of the workload and to
estimate the required level of performance.

In our experience most of the concurrency was
achieved by overlaying the execution of the GUI controller
(X server) with an application task that is communicating
with the GUI. We have noted that the utilization of proces-
sors is usually unbalanced. This leaves some room for soft-
ware designers to repartition interfaces in order to more
efficiently utilize the hardware. In particular, a higher level
API for rendering images in the X server could improve the
balance between the server and the clients. A more general
approach to balancing would be to run the CPUs in the sys-
tem at different levels of performance depending on the par-
ticular workload. This optimization would increase TLP and
decrease energy consumption.

6. Acknowledgments
This work was supported by an Intel Graduate Fellow-

ship, by an equipment grant from Intel, and by DARPA con-
tract number F33615-00-C-1678.

References
[1] L. A. Barroso, K. Gharachorloo, R. McNamara, A.

Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets, and B.
Berghese. Piranha: A Scalable Architecture Based on Single-
Chip Multiprocessing. Proceedings of the 27th Annual Inter-
national Symposium on Computer Architecture, June 2000.

[2] J. B. Chen, Y. Endo, K. Chan, D. Mazieres, A. Dias, M. Selt-
zer, and M. D. Smith. The Measured Performance of Personal
Computer Operating Systems. Proceedings of the 15th ACM
Symposium on Operating System Principles, pp. 299-313,
December 1995.

[3] K. Diefendorff. Power4 Focuses on Memory Bandwidth:
IBM Confronts IA-64, Says ISA Not Important. Microproces-
sor Report, Volume 13, Number 13, October 6, 1999.

[4] K. Diefendorff. Compaq Chooses SMT for Alpha: Simulta-
neous Multithreading Exploits Instruction- and Thread-Level
Parallelism. Microprocessor Report, Volume 13, Number 16,
December 6, 1999.

[5] Y. Endo, Z. Wang, J. B. Chen, and M. I. Seltzer. Using
Latency to Evaluate Interactive System Performance. 2nd
Symposium on Operating Systems Design and Implementa-
tion, pp. 185-199, October 1996.

[6] K. Flautner, R. Uhlig, S. Reinhardt, and T. Mudge. Thread-
level parallelism of desktop applications Proceedings of
Workshop on Multi-threaded Execution, Architecture and
Compilation, Toulouse, France, January 2000.

[7] L. Hammond and K. Olukotun. Considerations in the Design
of Hydra: a Multiprocessor-on-a-Chip Microarchitecture.
Stanford University Technical Report No. CSL-TR-98-749.

[8] C. Hauser, C. Jacobi, M. Theimer, B. Welch, and M. Weiser.
Using Threads in Interactive Systems: A Case Study. Pro-
ceedings of the 14th ACM Symposium on Operating Systems
Principles, pp. 94-105, December 1993.

[9] D. C. Lee, P. J. Crowley, J. Baer, T. E. Anderson, and B. N.
Bershad. Characteristics of Desktop Applications on Win-
dows NT. Proceedings of the 25th Annual International Sym-
posium on Computer Architecture, June 1998.

[10] J. Lo, L. Barroso, S. Eggers, K. Gharachorloo, H. Levy, and
S. Parekh. An Analysis of Database Workload Performance
on Simultaneous Multithreaded Processors. Proceedings of
the 25th Annual International Symposium on Computer
Architecture, June 1998.

[11] T. Pering, T. Burd, and R. Brodersen. The Simulation and
Evaluation of Dynamic Voltage Scaling Algorithms. Proceed-
ings of International Symposium on Low Power Electronics
and Design 1998, pp. 76-81, June 1998.

[12] J. S. Seng, D. M. Tullsen, and G. Z. N. Cai. Power-Sensitive
Multithreaded Architecture. Proceedings of International
Conference on Computer Design 2000, September 2000.

[13] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
Multithreading: Maximizing On-chip Parallelism. Proceed-
ings of the 22nd International Symposium on Computer
Architecture, pp. 206-218, June 1995.

[14] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling
for Reduced CPU Energy. Proceedings of the First Sympo-
sium of Operating Systems Design and Implementation,
November 1994.

[15] Microprocessor Architecture for Java Computing. http://
www.sun.com/microelectronics/MAJC, Sun Microsystems,
1999.

[16] Press release: Apple Debuts New PowerMac G4s with Dual
Processors. http://www.apple.com/pr/library/2000/jul/
19g4.html

[17] http://www.bapco.com/sys98k.htm
[18] http://www.zdnet.com/zdbop
Thread level parallelism and Interactive performance of desktop applications - ASPLOS 2000 August 21, 2000 10 of 10

138

	1. Introduction
	2. Previous work
	3. Metrics and methodology
	3.1 Detecting interactive episodes
	3.2 Benchmarks

	4. Response time results
	4.1 Individual episodes
	4.2 All interactive episodes
	4.3 The perception threshold
	4.4 Effects of background activity

	5. Conclusions and future work
	6. Acknowledgments

