
Evaluation of a High Performance Code Compression Method

Charles Lefurgy, Eva Piccininni, and Trevor Mudge
EECS Department, University of Michigan
1301 Beal Ave., Ann Arbor, MI 48109-2122

{ lefurgy,epiccini,tnm) @eecs.umich.edu

Abstract
Compressing the instructions of an embedded program

is important for cost-sensitive low-power control-oriented
embedded computing. A number of compression schemes
have been proposed to reduce program size. However, the
increased instruction density has an accompanying perfor-
mance cost because the instructions must be decompressed
before execution. In this paper, we investigate the perfor-
mance penalty of a hardware-managed code compression
algorithm recently introduced in IBM’s PowerPC 405. This
scheme is the first to combine many previously proposed
code compression techniques, making it an ideal candidate
for study. We find that code compression with appropriate
hardware optimizations does not have to incur much per-
formance loss. Furthermore, our studies show this holds for
architectures with a wide range of memory configurations
and issue widths. Surprisingly, we find that a performance
increase over native code is achievable in many situations.

1 Introduction

Reducing the required footprint for program memory is
increasingly important as system on a chip designs become
popular in the embedded world. Code compression is one
technique to reduce program size by applying compression
algorithms to native instruction sets. There are many recent
publications suggesting new compressed code representa-
tions [Araujo98, Benes97, Benes98, Bunda92, Ernst97,
Fraser95, Kozuch94, Lefurgy97, Lekatsas98, Liao96,
Wolfe921. However, the increased instruction density has
an accompanying performance cost because the instruc-
tions must be decompressed before execution. Although
some work has addressed the issue of performance for
decompression, on the whole, it remains much less studied
than size optimizations for the final compressed program.

In this paper we perform an in-depth analysis of one
particular compression method supported in hardware:
IBM’s CodePack instruction compression used in the Pow-

erPC 405. The approach taken by IBM is the first to com-
bine many previously proposed code compression
techniques. It is also the first commercially available code
compression systems that does more than simply support a
16-bit instruction subset. For these reasons, it makes an
ideal study. We do not attempt to precisely model the
CodePack as implemented in the PowerPC 405. Instead,
we implement CodePack on the SimpleScalar simulator in
order to inspect how it performs on various architecture
models. Our goal is to determine the performance pitfalls
inherent in the compression method and suggest architec-
tural features to improve execution time. We answer the
following questions:

What is the performance effect of decompression?

How does this performance change over a range of
microarchitectures?

Which steps of the decompression algorithm hinder
performance the most?

What additional optimizations can be made to improve
decompression performance?

Background and Related Work

In this section we review the methods of code compres-
sion relevant to those currently employed by microproces-
sor manufacturers to reduce the impact of instruction sets
on program size. Since we are considering only the perfor-
mance of hardware-managed compression, we have not
covered the many interesting software-managed compres-
sion techniques using compiler optimizations and interpre-
tation [Cooper99, Fraser95, Kirovski971.

The metric for measuring compression is compression

rufio which is defined by the formula:

compression ratio =
compressed size

original size (Eq. 1)

Copyright 1999 IEEE. Published in the Proceedings of Micro-32, November 16-18. 1999 in Haifa, Israel. Personal use of this material is permitted. How-
ever, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.

93
1072-4451/99 $10.00 0 1999 IEEE

2.1 Compression for RISC instruction sets

Bunda et al. [Bunda92] studied the benefit of using 16-
bit instructions over 32-bit instructions for the DLX
instruction set. 16-bit instructions are less expressive than
32bit instructions, which causes the number of instruc-
tions executed in the 16-bit instruction programs to
increase. They report that the performance penalty for exe-
cuting more instructions was often offset by the increased
fetch efficiency.

Thumb [ARM951 and MIPS16 [Kissell97] are two
examples of such instruction sets. Programs compiled for
Thumb achieve 30% smaller code in comparison to the
standard ARM instruction set, but run 15%-20% slower on
systems with ideal instruction memories (32-bit buses and
no wait states) IARM9.51. Code written for 32-bit MIPS-III
is typically reduced
MIPS 16 [Kissell97].

40% in size when compiled for

2.2 CCRP

The Compressed Code RISC Processor (CCRP)
[Wolfe92, Kozuch941 has an instruction cache that is mod-
ified to run compressed programs. At compile-time the
cache line bytes are Huffman encoded. At run-time cache
lines are fetched from main memory, decompressed, and
put in the instruction cache. Instructions fetched from the
cache are not compressed and have the same addresses as
in the original program. Therefore, the core of the proces-
sor does not need modification to support compression.
However, cache misses are problematic because missed
instructions in the cache do not reside at the same address
in main memory. CCRP uses a Line Address Table (LAT)
to map missed instruction cache addresses to main memory
addresses where the compressed code is located. The over-
all compression ratio of CCRP is 73% for MIPS programs.

2.3 CodePack

CodePack [lBM98, Kemp981 is used in IBM’s embed-
ded PowerPC systems. This scheme resembles CCRP in
that it is part of the memory system. The CPU is unaware
of compression, and a LAT-like device maps between the
native and compressed address spaces. The decompressor
accepts L 1 -cache miss addresses, retrieves the correspond-
ing compressed bytes from main memory, decompresses
them, and returns native PowerPC instructions to the Ll-
cache. CodePack achieves 60% compression ratio on Pow-
erPC. IBM reports that performance change in compressed
code is within 10% of native programs - sometimes with
a speedup. A speedup is possible because CodePack imple-
ments prefetching behavior that the underlying processor
does not have.

CodePack uses a different symbol size for compression
than previous schemes for 32-bit instructions. CCRP
divides each instruction into 4 g-bit symbols which are
then compressed with Huffman codes. The decoding pro-
cess in CCRP is history-based which serializes the decod-
ing process. Decoding 4 symbols per instruction is likely to
impact decompression time significantly. Lefurgy et al.
proposed a dictionary compression method for PowerPC
that uses complete 32-bit instructions as compression sym-
bols [Lefurgy97]. This method achieves compression ratios
similar to CodePack, but requires a dictionary with several
thousand entries which could increase access time and
hinder high-speed implementations. This variable-length
encoding scheme is similar to CodePack in that both pre-
pend each codeword with a short tag to indicate its size.
This should allow implementations with multiple decom-
pressors to quickly extract codewords from an input stream
and decompress them in parallel. CodePack divides each
PowerPC instruction into 2 16-bit symbols that are then
compressed into variable-length codewords. The 16-bit
symbols allow CodePack to achieve its compression ratio
with only 2 dictionaries of less than 5 12 entries each.

3 Compression Method

This section gives an overview of the CodePack com-
pression algorithm and discusses its current implementa-
tion in PowerPC. The complete CodePack algorithm is
described in the CodePack user manual [IBM98].

3.1 CodePack algorithm

Figure 1 illustrates the decompression algorithm. To
understand it, consider how the compression encoder
works (start at the bottom of Figure I). Each 32-bit instruc-
tion is divided into 16-bit high and low half-words which
are then translated to a variable bit codeword from 2 to 11
bits. Because the high and low half-words have very differ-
ent distribution frequencies and values, two separate dic-
tionaries are used for the translation. The most common
half-word values receive the shortest codewords. The
codewords are divided into 2 sections. The first section is a
2 or 3 bit tag that tells the size of the codeword. The second
section is used to index the dictionaries. The value 0 in the
lower half-word is encoded using only a 2 bit tag (no low
index bits) because it is the most frequently occurring
value. The dictionaries are fixed at program load-time
which allows them to be adapted for specific programs.
Half-words that do not fit in the dictionary are left directly
in the instruction stream and pre-pended with a 3 bit tag to
identify them as raw bytes instead of compressed bytes.

Each group of 16 instructions is combined into a com-
pression block. This is the granularity at which decompres-

94

A. Fetch index

/

B. Fetch compressed
instructions

>

C. Decompress

\

>I L1 I-cache miss address

\

Index table
(in main memory)

Index for
compression

group I

1st Block address ’

Select first or second block
of compressed instructions

Compressed bytes
(in main memory)

I I

I- \
Compression Block (
(16 variable-length

I I I I I I II I II
compressed instructions)

1 compressed instruction

Native Instruction &I

Figure 1: CodePack decompression
A) Use instruction address to fetch index from index table. B) Use index to map native instruction address to compressed
instruction address and fetch compressed instructions. C) Decompress compressed instructions into native instructions.

sion occurs. If the requested I-cache line (8 instructions) is
in the block, then the whole block is fetched and decom-
pressed.

The compressed instructions are stored at completely
different memory locations from the fixed-length native
instructions. Therefore, the instruction address from the
cache miss is mapped to the corresponding compressed
instruction address by an index table which is created dur-
ing the compression process. The function of the index
table is the same as the LAT in CCRP. Each index is 32-
bits. To optimize table size, each entry in the table maps
one compression group consisting of 2 compressed blocks
(32 instructions total). The first block is specified as a byte
offset into the cpmpressed memory and the second block is
specified using a shorter offset from the first block.

3.2 Implementation

The IBM implementation of CodePack has several fea-
tures to enable high-speed decoding. We attempt to model
their effects in our simulations.

Index cache. The index table is large enough that it must
be kept in main memory. However, the last used index
table entry is cached so that an access to the index table can
be avoided in the case when the next Ll-cache miss is in
the same compression group. (There is one index for each
compression group and each compression group maps 4
cache lines.) We will discuss the benefit of using even
larger index caches.

Burst read. Burst accesses are used to fetch compressed
bytes from main memory.

95

Instructions Ll I-cache miss
Bench executed (millions) Input set rate for 4.issue

ccl 1441 cp-dec1.i 5.7%

go 1265 30 12 null.in 6.2%
mpeg2enc 1119 default with profile=l, level=4, chroma=l, precision=O, repeat=0 0.0%

pegwit 1014 1LMB file 0.1%

per1 1108 ref input without "abortive" and "abruption" 4.4%

vortex 1060 ref input with PART-COUNT 400, INNER-LOOP 4, DELETES 80, STUFF-PARTS 80 5.2%

Table 1: Benchmarks

Dictionaries. Both dictionaries are kept in a 2KB on-chip
buffer. This is important for fast decompression since the
dictionaries are accessed frequently (once per instruction).

Decompression. As compressed bytes are returned from
main memory, they are decompressed at the rate of 1
instruction per cycle. This allows some overlap of fetching
and decompression operations. We will discuss the benefit
of using even greater decompression bandwidth.

Instruction prefetching. On an Ll-cache miss, instruc-
tions are decompressed and put into a 16 instruction output
buffer within the decompressor. Even though the Ll-cache
line requires 8 instructions, the remaining ones are always
decompressed. This buffer is completely filled on each Ll-
cache miss. This behaves as a prefetch for the next cache
line.

Instruction forwarding. As instructions are decom-
pressed, they are put in the output buffer and also immedi-
ately forwarded to the CPU for execution.

4 Experimental setup

We perform our compression experiments on the Sim-
plescalar 3.0 simulator [Burger971 after modifying it to
support compressed code. We use benchmarks selected
from the SPEC CINT95 [SPEC953 and MediaBench
[Lee971 suites. The benchmarks ccl, go, pet-l, and vortex
were chosen from CINT95 because they perform the worst
under CodePack since they have the highest Ll l-cache
miss ratios. The benchmarks mpeg2enc and pegwit are rep-
resentative of loop-intensive embedded benchmarks. All
benchmarks are compiled with GCC 2.6.3 using the opti-
mizations “ -03 -funroll-loops” and are statically linked
with library code. Table 1 lists the benchmarks and the
input sets. Each benchmark executes over 1 billion instruc-
tions and is run to completion.

SimpleScalar has 64-bit instructions which are loosely
encoded, and therefore highly compressible. We wanted an
instruction set that more closely resembled those used in
today’s microprocessors and used by code compression

researchers. Therefore, we re-encoded the SimpleScalar
instructions to fit within 32 bits. Our encoding is straight-
forward and resembles the MIPS IV encoding. Most of the
effort involved removing unused bits (for future expan-
sion) in the 64-bit instructions.

For our baseline simulations we choose three very dif-
ferent architectures. The Z-issue architecture is a low-end
processor for an embedded system. This is modeled as a
single issue, in-order, 5-stage pipeline. We simulate only
Ll caches and main memory. Main memory has a 64-bit
bus. The first access takes 10 cycles and successive
accesses take 2 cycles. The I-issue architecture differs
from the l-issue in that it is out-of-order and the bandwidth
between stages is 4 instructions. We use the 8-issue archi-
tecture as an example of a high performance system. The
simulation parameters for the architectures are given in
Table 2.

Our models for Ll-miss activity are illustrated in
Figure 2. Figure 2-a shows that a native code miss just
fetches the cache line from main memory in 4 accesses
(32-byte cache lines with a 64-bit bus). We modified Sim-
plescalar to return the critical word first for I-cache misses.
For example, if the fifth instruction in the cache line caused
the miss, it will be returned in the first access at t=lO. This
is a significant advantage for native code programs.
Decompression must proceed in a serial manner and cannot
take advantage of the critical word first policy. Figure 2-b
shows the baseline compression system. This model
fetches the index table entry from main memory (unless it
re-uses the previous index), uses the index to fetch code-
words from main memory, and decompresses codewords
as they are received. In the example, the consecutive main
memory accesses return compressed instructions in the
quantities 2, 3, 3, 3, 3, and 2. The critical instruction is in
the second access. Assuming that the decompressor has a
throughput of I instruction/cycle, then the critical instruc-
tion is available to the core at t=25.

Figure 2-c shows our improvements to the basic com-
pressed code model. We cache index entries, which often
avoids a lengthy access to main memory. We also investi-
gate the effect of increasing the decompression rate on per-
formance. In the example, a decompression rate of 2

96

SimpleScalar parameters I l-issue 4-issue S-issue 1

L

fetch queue size I1 14 18 I

decode width I1 14 18 I

issue width 1 in-order 4 out-of-order 8 out-of-order

commit width 1 4 8

Register update unit 2 64 128
entries

load/store queue

function units

2 32 64

alLl:l, mult:l, memport:l, alu:4, mult:l, memport:2, dll:8, nlult:l, memport:2,
fpalu:1, fpmult:l fpalu:4, fpmult:l fpalu:??, fpmult:l

branch pred

Ll i-cache

bimode 2048 entries gshare with 14-bit history hybrid predictors with 1024
entry meta table.

EKB, 32B lines, 2-assoc. 11-u 16KB 32KB

Ll d-cache 1 EKB. 16B lines, 2-assoc. lru 116KB I32KB I

memory latency

memorv width

10 cycle latency, 2 cycle rate same same

I64 bits same RlnlP

Table 2: Simulated architectures

a) Native code
Instruction cache miss
Insns. from main mem.

W CodePack
tnstruction cache miss
Index from main mem.
Codes from main mem.
Decompressor

c) CodePack optimized
Instruction cache miss
Index from index cache
Codes from main mem.
2 Decompressors

n Ll cache miss Fetch instructions (first line)

L1 cycle

cl Decompression cycle

30

j / i : / : : i :) i i : : i : / : / R j : j) j / / i : i I / : j I / i i i 1 /
r

n Fetch index 0 Fetch instructions (remaining lines) q Critical instruction

Figure 2: Example of Ll miss activity
2-a: The native program can fetch the critical (missed) instruction first and burst read the remainder of the cache line.

2-b: CodePack first fetches the index from the index table in main memory. It then fetches compressed instructions and
decompresses them in parallel.

2-c: CodePack optimizations are A) accessing index cache to eliminates index fetch to main memory and B) expanding
decompression bandwidth to decompress two instructions per cycle.

instructions/cycle allows the critical instruction to be ready
at t=14.

5 Results

Our first experiments evaluate the original CodePack
algorithm on a variety of architectures to characterize its
performance. We then propose optimizations to improve
the performance of compressed code. Finally, we vary the

97

Table 4: Composition of compressed region

“O?XCC 0.43 0.39 0.43 1.58 1.39 1.62 2.51 2.34 2.54

Table 5: Instructions per cycle

Native is the originaf program. CodePack is the baseline decompressor. Optimized is our optimized CodePack model with an
index cache and additional decompression bandwidth.

Bench

cc1

Original size Compressed Compression ratio
(byted size (bytes) (smaller is better)

1.083,168 654,999 60.5%

90 310,576 182.602 58.8%

mpeg2enc 118,416 74,681 63.2%

pegwit 88,560 54,120 61.3%

per1 267.568 162,045 60.6%

vortex 1 495.248 1 274.420 1 55.4%

Table 3: Compression ratio of .text section

memory system parameters to determine the performance
trends of the optimizations.

5.1 Code size

Table 3 shows the size of .text section of the original
and compressed programs. These results are similar to the
typical compression ratio of 60% reported by IBM for
PowerPC programs.

Table 4 shows the composition of the compressed .text
section. The Index table column represents the bits
required to translate cache miss addresses to compression
region addresses. The Dictionary column represents the
contents of the high and low half-word dictionaries. The
Compressed tags and Dictionary indices columns repre-
sent the two components of the compressed instructions in
the program. The Raw tags column represents the use of 3-
bit tags to mark non-compressed half-words. The Raw bits

column represents bits that are copied directly from the
original program in either the form of individual non-com-
pressed half-words or entire non-compressed CodePack
blocks. The Pad column shows the number of extra bits
required to byte-align CodePack blocks. The columns for
raw tags and raw bits show that a surprising portion (19-
25%) of the compressed program is not compressed. The
raw bits occur because there are instructions which contain
fields with values that to not repeat frequently or have adja-
cent fields with rare combinations of values. Many instruc-
tions that are represented with raw bits use large branch
offsets, unusual register ordering, large stack offsets, or
unique constants. Also, CodePack may choose to not com-
press entire blocks in the case that using the compression
algorithm would expand them. These non-compressed
blocks are included in the Raw bits count, but occur very
rarely in our benchmarks. It is possible that new compiler
optimizations could select instructions so that more of
them fit in the dictionary and less raw bits are required.

5.2 Overall performance

Table 5 shows the overall performance that compression
provides compared to native code. We also show an opti-
mized decompressor that provides significant speedup over
the baseline decompressor and even out-performs native
code in many cases. We describe our optimized model in
the following sections. The performance loss for com-
pressed code compared to native code is less than 14% for

98

l-issue, under 18% for 4-issue, and under 13% for g-issue.
The mpeg2enc and pegwit benchmarks do not produce
enough cache misses to produce a significant performance
difference between the compressed and native programs.
CodePack behaves similarly across each of the baseline
architectures provided that the cache sizes are scaled with
the issue width. Therefore in the remaining experiments,
we only present results for the 4-issue architecture.

5.3 Components of decompression latency

Intuition suggests that compression reduces the fetch
bandwidth which could actually lead to performance
improvement. However, CodePack requires that the com-
pressed instruction fetch be preceded by an access to the
index table and followed by decompression. This reduces
the fetch bandwidth below that of native code resulting in a
potential performance loss.

We explore two optimizations to reduce the effect of
index table lookup and decompression latency. These opti-
mizations allow the compressed instruction fetch to domi-
nate the Ll miss latency. Since the compressed instructions
have a higher instruction density than native instructions, a
speedup should result. In the following sub-sections, we
measure the effects of these optimizations on the baseline
decompressor model.

Index table access. We assume that the index table is
large and must reside in main memory. Therefore, lookup
operations on the table are expensive. The remaining steps
of decompression are dependent on the value of the index,
so it is important to fetch it efficiently. One way to improve
lookup latency is to cache some entries in faster memory.
Since a single index maps the location of 4 consecutive
cache lines and instructions have high spatial locality, it is
likely the same index will be used again. Therefore, cach-
ing should be very beneficial. Another approach to reduce
the cost of fetching index table entries from main memory
is to burst read several entries at once. We try both
approaches by adding a cache for index table entries. Since
the index table is indexed with bits from the miss address,
it can be accessed in parallel with the Ll cache. Therefore
in the case of an index cache hit, the index fetch does not
contribute to Ll miss penalty. Table 6 shows the miss rate
for ccl with index caches using the 4-issue model. All
index caches are fully-associative. A 64-line cache with 4
indexes per line can reduce the miss ratio under 15% for
the ccl benchmark which has the most I-cache misses.
This organization has a miss ratio of under 11% for vortex
and under 4% for the other benchmarks. This is the cache
organization we use in our optimized compression model.
The index cache contains IKB of index entries and 88
bytes of tag storage. This is about one-eighth the size of the

Number of
Line size (index entries)

lines 1 2 4 8

Table 6: Index cache miss ratio for ccl

Values represent index cache miss ratio during Ll cache
miss using CodePack on the 4-issue model. The index
cache used here is fully-associative.

4.issue

CodePack [Index Cache 1 Perfect ,
CC1 0.82 0.92 0.96

90 0.89 0.99 1.00

mpeg%enc 1.00 1.00 1.00

pegwit 1.00 1.00 1.00

per1 0.82 0.95 0.95

vortex 0.88 0.96 0.98

Table 7: Speedup due to index cache

Values represent speedup over native programs. The
index Cache column represents a fully-associative 64-
entry index cache with 4 indices per entry. The Perfect col-
umn represents an index cache that never misses.

4-issue instruction cache. It is able to map 32KB of the
original program into compressed bytes. In Table 7 the per-
formance of the native code is compared to CodePack,
CodePack with index cache, and CodePack with a perfect
index cache that always hits. The perfect index cache is
possible to build for short programs with small index tables
that can be put in an on-chip ROM. The optimized decom-
pressor performs within 8% of native code for ccl and
within 5% for the other benchmarks.

Instruction decompression. Once the compressed bytes
are retrieved, they must be decompressed. Decoding pro-
ceeds serially through each block until the desired instruc-
tions are found. The baseline CodePack implementation
assumes that one instruction can be decompressed per
cycle. Since a variable-length compressed instruction is
tagged with its size, it is easy to find the following com-
pressed instruction. Wider and faster decompvssion logic
can use this feature for higher decompression ihroughput.
The effect of having greater decoder bandwidth appears in
Table 8. Using 16 decompressors/cycle represents the fast-
est decompression possible since compression blocks con-
tain only 16 instructions. In the 4-issue model, we find that
most of the benefit is achieved by using only 2 decompres-
sors.

99

4-issue instruction cache size
r

1KB 4KB 16KB 64KB
.

Bench CodePack 1 Optimized 1 CodePack 1 Optimized 1 CodePack 1 Optimized 1 CodePack 1 Optimized
I I I I -

CC1 1 0.76) 1.06 1 0.78 1 1.01 1 0.82 1 0.97 1 0.96 1 1.00

go 0.79 1.14 0.84 1.11 0.89 1.05 0.98 1.01

mpeg2enc 0.93 1.01 1.00 1.00 1.00 1.00 1.00 . 1.00

pegwit 0.99 1.61 0.9 1.38 1.00 1.00 1.00 1.00

per1 0.72 1.13 0.71 1.05 0.82 1.03 0.99 0.99

vortex 0.78 1.25 0.78 1.15 0.88 1.03 0.98 1.00

Table 10: Variation in speedup due to l-cache size

Values represent speedup over native programs using the same l-cache size. All simulations are based on 4-issue model
with different cache sizes. The 7 6KB column is the 4-issue baseline model.

Bench

4-issue

CodePack 1 2 decoders I 16 decoders

[ccl I 0.82 I 0.87 I 0.87 I
go 0.89 0.94 0.94

mpegaenc 1.00 1.00 1.00

pegwit 1.00 1.00 1.00

per1 0.82 0.86 0.87

vortex I 0.88 I 0.93 I 0.93 I

Table 8: Speedup due to decompression rate

Values represent speedup over native programs.

Bench

CC1

4-issue

CodePack Index Decompress 1 All

0.82 1 0.92 1 0.87 1 0.97

go 0.89 0.99 0.94 1.05

mpeg2enc 1.00 1.00 1.00 1.00

pegwit 1.00 1.00 1.00 1.00

per1 0.82 0.95 0.86 1.03

I vortex 1 0.88 r 0.96 I 0.93 I 1.03 I

Table 9: Comparison of optimizations

Values represent speedup over native programs. Index is
CodePack with a fully-associative 64-entry index cache
with 4 indices per entry. Decompress is CodePack that can
decompress 2 instructions per cycle. A// shows the benefit
of both optimizations together. A slight speedup is attained
over native code for go, per/, and vortex.

We now combine both of the above optimizations to see
how they work together. Table 9 shows the performance of
each optimization individually and together. In our opti-
mized model, the index cache optimization improved per-
formance more than using a wider decompressor.

5.4 Performance effects due to architecture

features

The following sections modify the baseline architecture
in a number of ways in order to understand in which sys-
tems CodePack is useful. For each architecture modifica-
tion, we show the performance of the baseline
decompressor and optimized decompressor relative to the
performance of native code.

Sensitivity to cache size. Decompression is only invoked
on the Ll-cache miss path and is thus sensitive to cache
organization. We simulated many Ll I-cache sizes and
show the performance in Table 10. The default decompres-
sor has a performance penalty of up to 28% with IKB
caches. However, the optimized decompressor has up lo a
6 1% performance gain. The optimized decompressor has
better performance than the native code in every case. The
reason for this is that the dominant time to fill a cache miss
is reading in the compressed instructions. Since the opti-
mized decompressor can fetch more instructions with
fewer memory accesses, it can fill a cache line request
quicker than the native code. As cache size grows, the per-
formance of both decompressors approaches the perfor-
mance of native code. This is because the performance
difference is in the LI-miss penalty and there are fewer
misses with larger caches.

Sensitivity to main memory width. Many embedded sys-
tems have narrow buses to main memory. Instruction sets
with short instruction formats can out-perform wider
instructions because more instructions can be fetched in
less time. Bunda reports similar findings on a 16bit ver-
sion of the DLX instruction set [Bunda92]. This suggests
that code compression might offer a benefit in such archi-
tectures. Our results in Table I1 show the performance
change for buses of 16, 32,64, and 128 bits. The number of
main memory accesses for native and compressed instruc-
tions decreases as the bus widens, but CodePack still has
the overhead of the index fetch. Therefore, it performs rela-

100

Bench

4-issue main memory bus size

16 bits 32 bits 64 bits 128 bits

CodePack 1 Ootimtzed 1 CodePack 1 Optimized 1 CodePack 1 Optimized 1 CodePack 1 Optimized

1 ccl 1 0.94 I 1.00 1 0.91 1 0.99 1 0.82 1 0.97 1 0.76 1 0.94 I
I go I 1.03 1 1.12 1 0.98 t 1.08 I 0.89 1 1.05 1 0.84 1 1.00 I

mpegaenc 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

pegwit 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

per1 0.93 1.05 0.89 1.03 0.82 1.03 0.77 0.97

"O?ZteX 1.03 1.09 0.97 1.05 0.88 1.03 0.82 0.97

Table 11: Performance change by memory width

Values represent speedup over native programs using the same bus size. All simulations are based on 4-issue model with
different bus widths. The 64-bits column is the 4-issue baseline model.

Bench

Main memory latency compared to 4-issue model
!

0.5x lx 2x 4x 8X
1

CodePack I Ootimized I CodePack I Ootimized I CodePack I Ootimized I CodePack I Ootimized 1 CodePack 1 Ootimized

ccl 0.79 0.93 0.82 0.97 0.84 0.97 0.82 0.97 0.81 0.96

go 0.87 0.99 0.89 1.05 0.91 1.09 0.89 1.11 0.88 1.12

mpegaenc 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

pegwit 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00

per1 0.80 0.96 0.82 1.03 0.81 1.04 0.78 1.06 0.76 1.04

vortex I 0.84 1 0.97 1 0.88 I 1.03 t 0.91 I 1.05 I 0.90 t 1.05 1 0.89 1 1.06

Table 12: Performance change due to memory latency
Values represent speedup over native programs using the same memory latency. Ixcolumn is the 4-issue baseline model.

tively worse compared to native code as the bus widens. In
the optimized decompressor, the index fetch to main mem-
ory is largely eliminated so the performance degrades
much more gracefully than the baseline decompressor. On
the widest buses, the number of main memory accesses to
fill a cache line is about the same for compressed and
native code. Therefore, the decompress latency becomes
important. Native code is faster at this point because it does
not incur a time penalty for decompression.

Sensitivity to main memory latency. It is interesting to
consider what happens with decompression as main mem-
ory latencies grow. Embedded systems may use a variety
of memory technologies. We simulated several memory
latencies and show the results in Table 12. As memory
latency grows, the optimized decompressor can attain
speedups over native code because it uses fewer costly
accesses to main memory.

6 Conclusions and Future Work

The CodePack algorithm is very suitable for the small
embedded architectures for which it was designed. In par-
ticular, a performance benefit over native code can be real-

ized on systems with narrow memory buses or long
memory latencies. In systems where CodePack does not
perform well, reducing cache misses by increasing the
cache size helps remove performance loss.

We investigated adding some simple optimizations to
the basic CodePack implementation. These optimizations
remove the index fetch and decompression overhead in
CodePack. Once this overhead is removed, CodePack can
fetch a compressed program with fewer main memory
accesses and less latency than a native program. Combin-
ing the benefit of less main memory accesses and the inher-
ent prefetching behavior of the CodePack algorithm often
provides a speedup over native instructions. Our optimiza-
tions show that CodePack can be useful in a much wider
range of systems than the baseline implementation. In
many cases, native code did not perform better than our
optimized CodePack except on the systems with the fastest
memory or widest buses. Code compression systems need
not be low-performance and can actually yield a perfor-
mance benefit. This suggests a future line of research that
examines compression techniques to improve performance
rather than simply program size.

The performance benefit provided by the optimized
decompressor suggests that even smaller compressed rep-

101

resentations with higher decompression penalties could be
used. This would improve the compressed instruction fetch
latency, which is this the most time consuming part of &he
CodePack decompression. Even completely software-man-
aged decompression may be an attractive option to
resource limited computers.

Acknowledgments

This work was supported by ARPA grant DABT63-97-
C-0047 and equipment donated through Intel Corporation’s
Technology for Education 2000 Program.

References

[Araujo98] G Araujo, P. Centoducatte, M. Cartes, and Ricardo
Pannain, “Code Compression Based on Operand Factorization”,
Proc. 31st Ann. International Symp. on Microarchitecture, 1998.

[ARM951 Advanced RISC Machines Ltd., An Introduction to
Thumb, Mar. 1995.

[Benes97] M. Benes, A. Wolfe, S. M. Nowick, “A High-Speed
Asynchronous Decompression Circuit for Embedded Proces-
sors”, Proc. 17th Cor$ on Advanced Research in VLSI, 1991.

[Benes98] M. Benes, S. M. Nowick, and A. Wolfe, “A Fast Asyn-
chronous Huffman Decoder for Compressed-Code Embedded
processors”, Proc. IEEE International Symp. on Advanced
Research in Asynchronous Circuits and Systems, 1998.

[Bunda92] J. Bunda, D. Fussell, and W.C. Athas, “16-bit vs. 32-
bit Instructions for Pipelined Microprocessors”, Proc. 20th Ann.
International Symp. of Computer Architecture, 1992.

[Burger97] D. Burger and T. Austin, “The SimpleScalar Tool
Set, Version 2.0”, Computer Architecture News 25(3), June 1997.

[Cooper991 K. D. Cooper and N. McIntosh, “Enhanced code
compression for embedded RISC processors”, Proc. Conf: on
Programming Languages Design and Implementation, 1999.

[Ernst971 J. Ernst, W. Evans, C. W. Fraser, S. Lucco, and T. A.
Proebsting, “Code compression”, Proc. ACM SIGPLAN’97 ConJ:
on Programming Language Design and Implementation, 1997.

[Fraser951 C. W. Fraser, T. A. Proebsting, Custom Instruction
Sets for Code Compression, unpublished, http://www.cs.ari-
zona.edulpeople/todd/papers/pldi2.ps, Oct. 1995.

[IBM981 IBM, CodePack Pow’erPC Code Compression Utility
User’s Manual Version 3.0, IBM, 1998.

[Kemp98] T. Kemp et. al, “A decompression core for PowerPC”,
IBM J. Res. Dev. 42(6), Nov. 1998.

[KisselI K. Kissell, MIPSI6: High-density MfPS for the
Embedded Market, Silicon Graphics MIPS Group, 1997.

[KirovskiP7] D. Kirovski, J. Kin, and W. H. Mangione-Smith,
“Procedure Based Program Compression”, Proc. 30th Ann. Inter-
national Symp. on Microarchitecture, 1997.

[Kozuch94] M. Kozuch and A. Wolfe, “Compression of Embed-
ded System Programs,” IEEE international Conf. on Computer
Design, 1994.

[Lee971 C. Lee, M. Potkonjak, and W. Mangione-Smith, “Media-
Bench: A Tool for Evaluating and Synthesizing Multimedia and
Communications Systems”, Proceedings of the 30th Ann. Inter-
national Symp. on Microarchitecture, 1997.

(Lefurgy971 C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge,
“Improving code density using compression techniques”, Proc.
30th Ann. International Symp. on Microarchitecture, 1997.

[Lekatsas98] H. Lekatsas and W. Wolf, “Code Compression for
Embedded Systems”, Proc. 35th Design Automation Con$, 1998.

[Liao96] S. Liao, Code Generation and Optimization for Embed-
ded Digital Signal Processors, Ph.D. Dissertation, Massachusetts
Institute of Technology, June 1996.

[SPEC95] SPEC CPU’95, Technical Manual, August 1995

[Wolfe92] A. Wolfe and A. Chanin, “Executing Compressed Pro-
grams on an Embedded RISC Architecture,” Proc. 25th Ann.
International Symp. on Microarchitecture, 1992.

102

