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Abstract 
Compressing the instructions of an embedded program 

is important for cost-sensitive low-power control-oriented 
embedded computing. A number of compression schemes 
have been proposed to reduce program size. However, the 
increased instruction density has an accompanying perfor- 
mance cost because the instructions must be decompressed 
before execution. In this paper, we investigate the perfor- 
mance penalty of a hardware-managed code compression 
algorithm recently introduced in IBM’s PowerPC 405. This 
scheme is the first to combine many previously proposed 
code compression techniques, making it an ideal candidate 
for study. We find that code compression with appropriate 
hardware optimizations does not have to incur much per- 
formance loss. Furthermore, our studies show this holds for 
architectures with a wide range of memory configurations 
and issue widths. Surprisingly, we find that a performance 
increase over native code is achievable in many situations. 

1 Introduction 

Reducing the required footprint for program memory is 
increasingly important as system on a chip designs become 
popular in the embedded world. Code compression is one 
technique to reduce program size by applying compression 
algorithms to native instruction sets. There are many recent 
publications suggesting new compressed code representa- 
tions [Araujo98, Benes97, Benes98, Bunda92, Ernst97, 
Fraser95, Kozuch94, Lefurgy97, Lekatsas98, Liao96, 
Wolfe921. However, the increased instruction density has 
an accompanying performance cost because the instruc- 
tions must be decompressed before execution. Although 
some work has addressed the issue of performance for 
decompression, on the whole, it remains much less studied 
than size optimizations for the final compressed program. 

In this paper we perform an in-depth analysis of one 
particular compression method supported in hardware: 
IBM’s CodePack instruction compression used in the Pow- 

erPC 405. The approach taken by IBM is the first to com- 
bine many previously proposed code compression 
techniques. It is also the first commercially available code 
compression systems that does more than simply support a 
16-bit instruction subset. For these reasons, it makes an 
ideal study. We do not attempt to precisely model the 
CodePack as implemented in the PowerPC 405. Instead, 
we implement CodePack on the SimpleScalar simulator in 
order to inspect how it performs on various architecture 
models. Our goal is to determine the performance pitfalls 
inherent in the compression method and suggest architec- 
tural features to improve execution time. We answer the 
following questions: 

What is the performance effect of decompression? 

How does this performance change over a range of 
microarchitectures? 

Which steps of the decompression algorithm hinder 
performance the most? 

What additional optimizations can be made to improve 
decompression performance? 

Background and Related Work 

In this section we review the methods of code compres- 
sion relevant to those currently employed by microproces- 
sor manufacturers to reduce the impact of instruction sets 
on program size. Since we are considering only the perfor- 
mance of hardware-managed compression, we have not 
covered the many interesting software-managed compres- 
sion techniques using compiler optimizations and interpre- 
tation [Cooper99, Fraser95, Kirovski971. 

The metric for measuring compression is compression 

rufio which is defined by the formula: 

compression ratio = 
compressed size 

original size (Eq. 1) 
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2.1 Compression for RISC instruction sets 

Bunda et al. [Bunda92] studied the benefit of using 16- 
bit instructions over 32-bit instructions for the DLX 
instruction set. 16-bit instructions are less expressive than 
32bit instructions, which causes the number of instruc- 
tions executed in the 16-bit instruction programs to 
increase. They report that the performance penalty for exe- 
cuting more instructions was often offset by the increased 
fetch efficiency. 

Thumb [ARM951 and MIPS16 [Kissell97] are two 
examples of such instruction sets. Programs compiled for 
Thumb achieve 30% smaller code in comparison to the 
standard ARM instruction set, but run 15%-20% slower on 
systems with ideal instruction memories (32-bit buses and 
no wait states) IARM9.51. Code written for 32-bit MIPS-III 
is typically reduced 
MIPS 16 [Kissell97]. 

40% in size when compiled for 

2.2 CCRP 

The Compressed Code RISC Processor (CCRP) 
[Wolfe92, Kozuch941 has an instruction cache that is mod- 
ified to run compressed programs. At compile-time the 
cache line bytes are Huffman encoded. At run-time cache 
lines are fetched from main memory, decompressed, and 
put in the instruction cache. Instructions fetched from the 
cache are not compressed and have the same addresses as 
in the original program. Therefore, the core of the proces- 
sor does not need modification to support compression. 
However, cache misses are problematic because missed 
instructions in the cache do not reside at the same address 
in main memory. CCRP uses a Line Address Table (LAT) 
to map missed instruction cache addresses to main memory 
addresses where the compressed code is located. The over- 
all compression ratio of CCRP is 73% for MIPS programs. 

2.3 CodePack 

CodePack [lBM98, Kemp981 is used in IBM’s embed- 
ded PowerPC systems. This scheme resembles CCRP in 
that it is part of the memory system. The CPU is unaware 
of compression, and a LAT-like device maps between the 
native and compressed address spaces. The decompressor 
accepts L 1 -cache miss addresses, retrieves the correspond- 
ing compressed bytes from main memory, decompresses 
them, and returns native PowerPC instructions to the Ll- 
cache. CodePack achieves 60% compression ratio on Pow- 
erPC. IBM reports that performance change in compressed 
code is within 10% of native programs - sometimes with 
a speedup. A speedup is possible because CodePack imple- 
ments prefetching behavior that the underlying processor 
does not have. 

CodePack uses a different symbol size for compression 
than previous schemes for 32-bit instructions. CCRP 
divides each instruction into 4 g-bit symbols which are 
then compressed with Huffman codes. The decoding pro- 
cess in CCRP is history-based which serializes the decod- 
ing process. Decoding 4 symbols per instruction is likely to 
impact decompression time significantly. Lefurgy et al. 
proposed a dictionary compression method for PowerPC 
that uses complete 32-bit instructions as compression sym- 
bols [Lefurgy97]. This method achieves compression ratios 
similar to CodePack, but requires a dictionary with several 
thousand entries which could increase access time and 
hinder high-speed implementations. This variable-length 
encoding scheme is similar to CodePack in that both pre- 
pend each codeword with a short tag to indicate its size. 
This should allow implementations with multiple decom- 
pressors to quickly extract codewords from an input stream 
and decompress them in parallel. CodePack divides each 
PowerPC instruction into 2 16-bit symbols that are then 
compressed into variable-length codewords. The 16-bit 
symbols allow CodePack to achieve its compression ratio 
with only 2 dictionaries of less than 5 12 entries each. 

3 Compression Method 

This section gives an overview of the CodePack com- 
pression algorithm and discusses its current implementa- 
tion in PowerPC. The complete CodePack algorithm is 
described in the CodePack user manual [IBM98]. 

3.1 CodePack algorithm 

Figure 1 illustrates the decompression algorithm. To 
understand it, consider how the compression encoder 
works (start at the bottom of Figure I). Each 32-bit instruc- 
tion is divided into 16-bit high and low half-words which 
are then translated to a variable bit codeword from 2 to 11 
bits. Because the high and low half-words have very differ- 
ent distribution frequencies and values, two separate dic- 
tionaries are used for the translation. The most common 
half-word values receive the shortest codewords. The 
codewords are divided into 2 sections. The first section is a 
2 or 3 bit tag that tells the size of the codeword. The second 
section is used to index the dictionaries. The value 0 in the 
lower half-word is encoded using only a 2 bit tag (no low 
index bits) because it is the most frequently occurring 
value. The dictionaries are fixed at program load-time 
which allows them to be adapted for specific programs. 
Half-words that do not fit in the dictionary are left directly 
in the instruction stream and pre-pended with a 3 bit tag to 
identify them as raw bytes instead of compressed bytes. 

Each group of 16 instructions is combined into a com- 
pression block. This is the granularity at which decompres- 
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Figure 1: CodePack decompression 
A) Use instruction address to fetch index from index table. B) Use index to map native instruction address to compressed 
instruction address and fetch compressed instructions. C) Decompress compressed instructions into native instructions. 

sion occurs. If the requested I-cache line (8 instructions) is 
in the block, then the whole block is fetched and decom- 
pressed. 

The compressed instructions are stored at completely 
different memory locations from the fixed-length native 
instructions. Therefore, the instruction address from the 
cache miss is mapped to the corresponding compressed 
instruction address by an index table which is created dur- 
ing the compression process. The function of the index 
table is the same as the LAT in CCRP. Each index is 32- 
bits. To optimize table size, each entry in the table maps 
one compression group consisting of 2 compressed blocks 
(32 instructions total). The first block is specified as a byte 
offset into the cpmpressed memory and the second block is 
specified using a shorter offset from the first block. 

3.2 Implementation 

The IBM implementation of CodePack has several fea- 
tures to enable high-speed decoding. We attempt to model 
their effects in our simulations. 

Index cache. The index table is large enough that it must 
be kept in main memory. However, the last used index 
table entry is cached so that an access to the index table can 
be avoided in the case when the next Ll-cache miss is in 
the same compression group. (There is one index for each 
compression group and each compression group maps 4 
cache lines.) We will discuss the benefit of using even 
larger index caches. 

Burst read. Burst accesses are used to fetch compressed 
bytes from main memory. 
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Instructions Ll I-cache miss 
Bench executed (millions) Input set rate for 4.issue 

ccl 1441 cp-dec1.i 5.7% 

go 1265 30 12 null.in 6.2% 
mpeg2enc 1119 default with profile=l, level=4, chroma=l, precision=O, repeat=0 0.0% 

pegwit 1014 1LMB file 0.1% 

per1 1108 ref input without "abortive" and "abruption" 4.4% 

vortex 1060 ref input with PART-COUNT 400, INNER-LOOP 4, DELETES 80, STUFF-PARTS 80 5.2% 

Table 1: Benchmarks 

Dictionaries. Both dictionaries are kept in a 2KB on-chip 
buffer. This is important for fast decompression since the 
dictionaries are accessed frequently (once per instruction). 

Decompression. As compressed bytes are returned from 
main memory, they are decompressed at the rate of 1 
instruction per cycle. This allows some overlap of fetching 
and decompression operations. We will discuss the benefit 
of using even greater decompression bandwidth. 

Instruction prefetching. On an Ll-cache miss, instruc- 
tions are decompressed and put into a 16 instruction output 
buffer within the decompressor. Even though the Ll-cache 
line requires 8 instructions, the remaining ones are always 
decompressed. This buffer is completely filled on each Ll- 
cache miss. This behaves as a prefetch for the next cache 
line. 

Instruction forwarding. As instructions are decom- 
pressed, they are put in the output buffer and also immedi- 
ately forwarded to the CPU for execution. 

4 Experimental setup 

We perform our compression experiments on the Sim- 
plescalar 3.0 simulator [Burger971 after modifying it to 
support compressed code. We use benchmarks selected 
from the SPEC CINT95 [SPEC953 and MediaBench 
[Lee971 suites. The benchmarks ccl, go, pet-l, and vortex 
were chosen from CINT95 because they perform the worst 
under CodePack since they have the highest Ll l-cache 
miss ratios. The benchmarks mpeg2enc and pegwit are rep- 
resentative of loop-intensive embedded benchmarks. All 
benchmarks are compiled with GCC 2.6.3 using the opti- 
mizations “ -03 -funroll-loops” and are statically linked 
with library code. Table 1 lists the benchmarks and the 
input sets. Each benchmark executes over 1 billion instruc- 
tions and is run to completion. 

SimpleScalar has 64-bit instructions which are loosely 
encoded, and therefore highly compressible. We wanted an 
instruction set that more closely resembled those used in 
today’s microprocessors and used by code compression 

researchers. Therefore, we re-encoded the SimpleScalar 
instructions to fit within 32 bits. Our encoding is straight- 
forward and resembles the MIPS IV encoding. Most of the 
effort involved removing unused bits (for future expan- 
sion) in the 64-bit instructions. 

For our baseline simulations we choose three very dif- 
ferent architectures. The Z-issue architecture is a low-end 
processor for an embedded system. This is modeled as a 
single issue, in-order, 5-stage pipeline. We simulate only 
Ll caches and main memory. Main memory has a 64-bit 
bus. The first access takes 10 cycles and successive 
accesses take 2 cycles. The I-issue architecture differs 
from the l-issue in that it is out-of-order and the bandwidth 
between stages is 4 instructions. We use the 8-issue archi- 
tecture as an example of a high performance system. The 
simulation parameters for the architectures are given in 
Table 2. 

Our models for Ll-miss activity are illustrated in 
Figure 2. Figure 2-a shows that a native code miss just 
fetches the cache line from main memory in 4 accesses 
(32-byte cache lines with a 64-bit bus). We modified Sim- 
plescalar to return the critical word first for I-cache misses. 
For example, if the fifth instruction in the cache line caused 
the miss, it will be returned in the first access at t=lO. This 
is a significant advantage for native code programs. 
Decompression must proceed in a serial manner and cannot 
take advantage of the critical word first policy. Figure 2-b 
shows the baseline compression system. This model 
fetches the index table entry from main memory (unless it 
re-uses the previous index), uses the index to fetch code- 
words from main memory, and decompresses codewords 
as they are received. In the example, the consecutive main 
memory accesses return compressed instructions in the 
quantities 2, 3, 3, 3, 3, and 2. The critical instruction is in 
the second access. Assuming that the decompressor has a 
throughput of I instruction/cycle, then the critical instruc- 
tion is available to the core at t=25. 

Figure 2-c shows our improvements to the basic com- 
pressed code model. We cache index entries, which often 
avoids a lengthy access to main memory. We also investi- 
gate the effect of increasing the decompression rate on per- 
formance. In the example, a decompression rate of 2 
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SimpleScalar parameters I l-issue 4-issue S-issue 1 

L 

fetch queue size I1 14 18 I 

decode width I1 14 18 I 

issue width 1 in-order 4 out-of-order 8 out-of-order 

commit width 1 4 8 

Register update unit 2 64 128 
entries 

load/store queue 

function units 

2 32 64 

alLl:l, mult:l, memport:l, alu:4, mult:l, memport:2, dll:8, nlult:l, memport:2, 
fpalu:1, fpmult:l fpalu:4, fpmult:l fpalu:??, fpmult:l 

branch pred 

Ll i-cache 

bimode 2048 entries gshare with 14-bit history hybrid predictors with 1024 
entry meta table. 

EKB, 32B lines, 2-assoc. 11-u 16KB 32KB 

Ll d-cache 1 EKB. 16B lines, 2-assoc. lru 116KB I32KB I 

memory latency 

memorv width 

10 cycle latency, 2 cycle rate same same 

I64 bits same RlnlP 

Table 2: Simulated architectures 

a) Native code 
Instruction cache miss 
Insns. from main mem. 

W CodePack 
tnstruction cache miss 
Index from main mem. 
Codes from main mem. 
Decompressor 

c) CodePack optimized 
Instruction cache miss 
Index from index cache 
Codes from main mem. 
2 Decompressors 

n Ll cache miss Fetch instructions (first line) 

L1 cycle 

cl Decompression cycle 

30 

j / i : / : : i : ) i i : : i : / : / R j : j ) j / / i : i I / : j I / i i i 1 / 
r 

n Fetch index 0 Fetch instructions (remaining lines) q Critical instruction 

Figure 2: Example of Ll miss activity 
2-a: The native program can fetch the critical (missed) instruction first and burst read the remainder of the cache line. 

2-b: CodePack first fetches the index from the index table in main memory. It then fetches compressed instructions and 
decompresses them in parallel. 

2-c: CodePack optimizations are A) accessing index cache to eliminates index fetch to main memory and B) expanding 
decompression bandwidth to decompress two instructions per cycle. 

instructions/cycle allows the critical instruction to be ready 
at t=14. 

5 Results 

Our first experiments evaluate the original CodePack 
algorithm on a variety of architectures to characterize its 
performance. We then propose optimizations to improve 
the performance of compressed code. Finally, we vary the 
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Table 4: Composition of compressed region 

“O?XCC 0.43 0.39 0.43 1.58 1.39 1.62 2.51 2.34 2.54 

Table 5: Instructions per cycle 

Native is the originaf program. CodePack is the baseline decompressor. Optimized is our optimized CodePack model with an 
index cache and additional decompression bandwidth. 

Bench 

cc1 

Original size Compressed Compression ratio 
(byted size (bytes) (smaller is better) 

1.083,168 654,999 60.5% 

90 310,576 182.602 58.8% 

mpeg2enc 118,416 74,681 63.2% 

pegwit 88,560 54,120 61.3% 

per1 267.568 162,045 60.6% 

vortex 1 495.248 1 274.420 1 55.4% 

Table 3: Compression ratio of .text section 

memory system parameters to determine the performance 
trends of the optimizations. 

5.1 Code size 

Table 3 shows the size of .text section of the original 
and compressed programs. These results are similar to the 
typical compression ratio of 60% reported by IBM for 
PowerPC programs. 

Table 4 shows the composition of the compressed .text 
section. The Index table column represents the bits 
required to translate cache miss addresses to compression 
region addresses. The Dictionary column represents the 
contents of the high and low half-word dictionaries. The 
Compressed tags and Dictionary indices columns repre- 
sent the two components of the compressed instructions in 
the program. The Raw tags column represents the use of 3- 
bit tags to mark non-compressed half-words. The Raw bits 

column represents bits that are copied directly from the 
original program in either the form of individual non-com- 
pressed half-words or entire non-compressed CodePack 
blocks. The Pad column shows the number of extra bits 
required to byte-align CodePack blocks. The columns for 
raw tags and raw bits show that a surprising portion (19- 
25%) of the compressed program is not compressed. The 
raw bits occur because there are instructions which contain 
fields with values that to not repeat frequently or have adja- 
cent fields with rare combinations of values. Many instruc- 
tions that are represented with raw bits use large branch 
offsets, unusual register ordering, large stack offsets, or 
unique constants. Also, CodePack may choose to not com- 
press entire blocks in the case that using the compression 
algorithm would expand them. These non-compressed 
blocks are included in the Raw bits count, but occur very 
rarely in our benchmarks. It is possible that new compiler 
optimizations could select instructions so that more of 
them fit in the dictionary and less raw bits are required. 

5.2 Overall performance 

Table 5 shows the overall performance that compression 
provides compared to native code. We also show an opti- 
mized decompressor that provides significant speedup over 
the baseline decompressor and even out-performs native 
code in many cases. We describe our optimized model in 
the following sections. The performance loss for com- 
pressed code compared to native code is less than 14% for 
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l-issue, under 18% for 4-issue, and under 13% for g-issue. 
The mpeg2enc and pegwit benchmarks do not produce 
enough cache misses to produce a significant performance 
difference between the compressed and native programs. 
CodePack behaves similarly across each of the baseline 
architectures provided that the cache sizes are scaled with 
the issue width. Therefore in the remaining experiments, 
we only present results for the 4-issue architecture. 

5.3 Components of decompression latency 

Intuition suggests that compression reduces the fetch 
bandwidth which could actually lead to performance 
improvement. However, CodePack requires that the com- 
pressed instruction fetch be preceded by an access to the 
index table and followed by decompression. This reduces 
the fetch bandwidth below that of native code resulting in a 
potential performance loss. 

We explore two optimizations to reduce the effect of 
index table lookup and decompression latency. These opti- 
mizations allow the compressed instruction fetch to domi- 
nate the Ll miss latency. Since the compressed instructions 
have a higher instruction density than native instructions, a 
speedup should result. In the following sub-sections, we 
measure the effects of these optimizations on the baseline 
decompressor model. 

Index table access. We assume that the index table is 
large and must reside in main memory. Therefore, lookup 
operations on the table are expensive. The remaining steps 
of decompression are dependent on the value of the index, 
so it is important to fetch it efficiently. One way to improve 
lookup latency is to cache some entries in faster memory. 
Since a single index maps the location of 4 consecutive 
cache lines and instructions have high spatial locality, it is 
likely the same index will be used again. Therefore, cach- 
ing should be very beneficial. Another approach to reduce 
the cost of fetching index table entries from main memory 
is to burst read several entries at once. We try both 
approaches by adding a cache for index table entries. Since 
the index table is indexed with bits from the miss address, 
it can be accessed in parallel with the Ll cache. Therefore 
in the case of an index cache hit, the index fetch does not 
contribute to Ll miss penalty. Table 6 shows the miss rate 
for ccl with index caches using the 4-issue model. All 
index caches are fully-associative. A 64-line cache with 4 
indexes per line can reduce the miss ratio under 15% for 
the ccl benchmark which has the most I-cache misses. 
This organization has a miss ratio of under 11% for vortex 
and under 4% for the other benchmarks. This is the cache 
organization we use in our optimized compression model. 
The index cache contains IKB of index entries and 88 
bytes of tag storage. This is about one-eighth the size of the 

Number of 
Line size (index entries) 

lines 1 2 4 8 

Table 6: Index cache miss ratio for ccl 

Values represent index cache miss ratio during Ll cache 
miss using CodePack on the 4-issue model. The index 
cache used here is fully-associative. 

4.issue 

CodePack [ Index Cache 1 Perfect , 
CC1 0.82 0.92 0.96 

90 0.89 0.99 1.00 

mpeg%enc 1.00 1.00 1.00 

pegwit 1.00 1.00 1.00 

per1 0.82 0.95 0.95 

vortex 0.88 0.96 0.98 

Table 7: Speedup due to index cache 

Values represent speedup over native programs. The 
index Cache column represents a fully-associative 64- 
entry index cache with 4 indices per entry. The Perfect col- 
umn represents an index cache that never misses. 

4-issue instruction cache. It is able to map 32KB of the 
original program into compressed bytes. In Table 7 the per- 
formance of the native code is compared to CodePack, 
CodePack with index cache, and CodePack with a perfect 
index cache that always hits. The perfect index cache is 
possible to build for short programs with small index tables 
that can be put in an on-chip ROM. The optimized decom- 
pressor performs within 8% of native code for ccl and 
within 5% for the other benchmarks. 

Instruction decompression. Once the compressed bytes 
are retrieved, they must be decompressed. Decoding pro- 
ceeds serially through each block until the desired instruc- 
tions are found. The baseline CodePack implementation 
assumes that one instruction can be decompressed per 
cycle. Since a variable-length compressed instruction is 
tagged with its size, it is easy to find the following com- 
pressed instruction. Wider and faster decompvssion logic 
can use this feature for higher decompression ihroughput. 
The effect of having greater decoder bandwidth appears in 
Table 8. Using 16 decompressors/cycle represents the fast- 
est decompression possible since compression blocks con- 
tain only 16 instructions. In the 4-issue model, we find that 
most of the benefit is achieved by using only 2 decompres- 
sors. 
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4-issue instruction cache size 
r 

1KB 4KB 16KB 64KB 
. 

Bench CodePack 1 Optimized 1 CodePack 1 Optimized 1 CodePack 1 Optimized 1 CodePack 1 Optimized 
I I I I - 

CC1 1 0.76 ) 1.06 1 0.78 1 1.01 1 0.82 1 0.97 1 0.96 1 1.00 

go 0.79 1.14 0.84 1.11 0.89 1.05 0.98 1.01 

mpeg2enc 0.93 1.01 1.00 1.00 1.00 1.00 1.00 . 1.00 

pegwit 0.99 1.61 0.9 1.38 1.00 1.00 1.00 1.00 

per1 0.72 1.13 0.71 1.05 0.82 1.03 0.99 0.99 

vortex 0.78 1.25 0.78 1.15 0.88 1.03 0.98 1.00 

Table 10: Variation in speedup due to l-cache size 

Values represent speedup over native programs using the same l-cache size. All simulations are based on 4-issue model 
with different cache sizes. The 7 6KB column is the 4-issue baseline model. 

Bench 

4-issue 

CodePack 1 2 decoders I 16 decoders 

[ ccl I 0.82 I 0.87 I 0.87 I 
go 0.89 0.94 0.94 

mpegaenc 1.00 1.00 1.00 

pegwit 1.00 1.00 1.00 

per1 0.82 0.86 0.87 

vortex I 0.88 I 0.93 I 0.93 I 

Table 8: Speedup due to decompression rate 

Values represent speedup over native programs. 

Bench 

CC1 

4-issue 

CodePack Index Decompress 1 All 

0.82 1 0.92 1 0.87 1 0.97 

go 0.89 0.99 0.94 1.05 

mpeg2enc 1.00 1.00 1.00 1.00 

pegwit 1.00 1.00 1.00 1.00 

per1 0.82 0.95 0.86 1.03 

I vortex 1 0.88 r 0.96 I 0.93 I 1.03 I 

Table 9: Comparison of optimizations 

Values represent speedup over native programs. Index is 
CodePack with a fully-associative 64-entry index cache 
with 4 indices per entry. Decompress is CodePack that can 
decompress 2 instructions per cycle. A// shows the benefit 
of both optimizations together. A slight speedup is attained 
over native code for go, per/, and vortex. 

We now combine both of the above optimizations to see 
how they work together. Table 9 shows the performance of 
each optimization individually and together. In our opti- 
mized model, the index cache optimization improved per- 
formance more than using a wider decompressor. 

5.4 Performance effects due to architecture 

features 

The following sections modify the baseline architecture 
in a number of ways in order to understand in which sys- 
tems CodePack is useful. For each architecture modifica- 
tion, we show the performance of the baseline 
decompressor and optimized decompressor relative to the 
performance of native code. 

Sensitivity to cache size. Decompression is only invoked 
on the Ll-cache miss path and is thus sensitive to cache 
organization. We simulated many Ll I-cache sizes and 
show the performance in Table 10. The default decompres- 
sor has a performance penalty of up to 28% with IKB 
caches. However, the optimized decompressor has up lo a 
6 1% performance gain. The optimized decompressor has 
better performance than the native code in every case. The 
reason for this is that the dominant time to fill a cache miss 
is reading in the compressed instructions. Since the opti- 
mized decompressor can fetch more instructions with 
fewer memory accesses, it can fill a cache line request 
quicker than the native code. As cache size grows, the per- 
formance of both decompressors approaches the perfor- 
mance of native code. This is because the performance 
difference is in the LI-miss penalty and there are fewer 
misses with larger caches. 

Sensitivity to main memory width. Many embedded sys- 
tems have narrow buses to main memory. Instruction sets 
with short instruction formats can out-perform wider 
instructions because more instructions can be fetched in 
less time. Bunda reports similar findings on a 16bit ver- 
sion of the DLX instruction set [Bunda92]. This suggests 
that code compression might offer a benefit in such archi- 
tectures. Our results in Table I1 show the performance 
change for buses of 16, 32,64, and 128 bits. The number of 
main memory accesses for native and compressed instruc- 
tions decreases as the bus widens, but CodePack still has 
the overhead of the index fetch. Therefore, it performs rela- 
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Bench 

4-issue main memory bus size 

16 bits 32 bits 64 bits 128 bits 

CodePack 1 Ootimtzed 1 CodePack 1 Optimized 1 CodePack 1 Optimized 1 CodePack 1 Optimized 

1 ccl 1 0.94 I 1.00 1 0.91 1 0.99 1 0.82 1 0.97 1 0.76 1 0.94 I 
I go I 1.03 1 1.12 1 0.98 t 1.08 I 0.89 1 1.05 1 0.84 1 1.00 I 

mpegaenc 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

pegwit 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

per1 0.93 1.05 0.89 1.03 0.82 1.03 0.77 0.97 

"O?ZteX 1.03 1.09 0.97 1.05 0.88 1.03 0.82 0.97 

Table 11: Performance change by memory width 

Values represent speedup over native programs using the same bus size. All simulations are based on 4-issue model with 
different bus widths. The 64-bits column is the 4-issue baseline model. 

Bench 

Main memory latency compared to 4-issue model 
! 

0.5x lx 2x 4x 8X 
1 

CodePack I Ootimized I CodePack I Ootimized I CodePack I Ootimized I CodePack I Ootimized 1 CodePack 1 Ootimized 

ccl 0.79 0.93 0.82 0.97 0.84 0.97 0.82 0.97 0.81 0.96 

go 0.87 0.99 0.89 1.05 0.91 1.09 0.89 1.11 0.88 1.12 

mpegaenc 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

pegwit 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 

per1 0.80 0.96 0.82 1.03 0.81 1.04 0.78 1.06 0.76 1.04 

vortex I 0.84 1 0.97 1 0.88 I 1.03 t 0.91 I 1.05 I 0.90 t 1.05 1 0.89 1 1.06 

Table 12: Performance change due to memory latency 
Values represent speedup over native programs using the same memory latency. Ixcolumn is the 4-issue baseline model. 

tively worse compared to native code as the bus widens. In 
the optimized decompressor, the index fetch to main mem- 
ory is largely eliminated so the performance degrades 
much more gracefully than the baseline decompressor. On 
the widest buses, the number of main memory accesses to 
fill a cache line is about the same for compressed and 
native code. Therefore, the decompress latency becomes 
important. Native code is faster at this point because it does 
not incur a time penalty for decompression. 

Sensitivity to main memory latency. It is interesting to 
consider what happens with decompression as main mem- 
ory latencies grow. Embedded systems may use a variety 
of memory technologies. We simulated several memory 
latencies and show the results in Table 12. As memory 
latency grows, the optimized decompressor can attain 
speedups over native code because it uses fewer costly 
accesses to main memory. 

6 Conclusions and Future Work 

The CodePack algorithm is very suitable for the small 
embedded architectures for which it was designed. In par- 
ticular, a performance benefit over native code can be real- 

ized on systems with narrow memory buses or long 
memory latencies. In systems where CodePack does not 
perform well, reducing cache misses by increasing the 
cache size helps remove performance loss. 

We investigated adding some simple optimizations to 
the basic CodePack implementation. These optimizations 
remove the index fetch and decompression overhead in 
CodePack. Once this overhead is removed, CodePack can 
fetch a compressed program with fewer main memory 
accesses and less latency than a native program. Combin- 
ing the benefit of less main memory accesses and the inher- 
ent prefetching behavior of the CodePack algorithm often 
provides a speedup over native instructions. Our optimiza- 
tions show that CodePack can be useful in a much wider 
range of systems than the baseline implementation. In 
many cases, native code did not perform better than our 
optimized CodePack except on the systems with the fastest 
memory or widest buses. Code compression systems need 
not be low-performance and can actually yield a perfor- 
mance benefit. This suggests a future line of research that 
examines compression techniques to improve performance 
rather than simply program size. 

The performance benefit provided by the optimized 
decompressor suggests that even smaller compressed rep- 
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resentations with higher decompression penalties could be 
used. This would improve the compressed instruction fetch 
latency, which is this the most time consuming part of &he 
CodePack decompression. Even completely software-man- 
aged decompression may be an attractive option to 
resource limited computers. 
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