| ntrospective computers

Krisztian Flautner (manowar@engin.umich.edu)
Trevor Mudge (tnm@eecs.umich.edu)

Abstract

Profile-feedback based analysis is a simple but powerful way of collecting information about a program.

The downside of this approach is that it requires a set of “representative” input sets, it is time consuming and
is hard to apply to interactive programs. These deficiencies are largely due to the prevailing compilation
model, where compilation is an off-line activity. Having a compiler as a run-time resource, along with the
ability to observe a program in real-time would increase the applicability of profile feedback. Instead of sim-
ulating a program only with input sets that are deemed to be representative, an introspecive computer can
optimize for the specific instance of program execution. Hardware can only optimize based on a narrow
window, while compilers have access to the big picture. These considerations have led us to propose the
“introspecive” computer which attempts to combine the strengths of both approaches.

Introspecive processors blur the separation line of the traditional hardware-software interface. The compilers
and profilers become part of the run-time environment (see Figure 1). During execution, information is col-
lected by observer threads, which is fed back to a compiler that watches over the program’s execution. The
compiler can make the decision to recompile parts or the entire program — taking run-time information into
account — and insert the recompiled pieces into the executing program.

FIGURE 1. High level model of the introspecive computer

Processing hardware

work thread
optimizer thread

work thread
observer thread

|

|

work thread
work thread

The introspecive computer consists of a hardware component that is able to execute one or more program threads and their corresponding observer threads simulta-
neously. A fast communications channel exists between these two threads. The software component consists of acompiler and custom threads that observe work-threads’
execution. The aspect of the execution that is observed and how that information is acted on is under compiler and sfeeratiogtsy.

The programs that are executed on the introspecive computer are encoded in a high-level distribution form,
which is compiled to the instruction set of the processor by the resident compiler. The distribution form
facilitates high quality optimizations, since information does not have to be rediscovered by the compiler
and allows the architecture to evolve from one generation to another while prdeidirayd compatibil-

ity for software. The form can be annotated with information that is collected during runs of the program to
provide a richer context to the compiler. The distribution form currently under development is called Mirv.

In order to facilitate the real-time observation and analysis of threads, the hardware must support the
current execution of multiplethreads (i.e. single chip SMP or SMT hardware). The compiler decides what
aspects of the execution are observed, and inserts code into the work-thread to accomplish the measure-
ments. The observer is custom generated for the program, and the aspects that are being observed. Moreover
the work-threads must be able to pass information to their observers quickly, which implies that there is sup-
port in the ISA for inter-thread communications along witfiast communications channel between

threads. The partial recompilation and insertion of code into a running program requires some level of hard-
ware support as well. The open question that we hope to answer is whether the profile collection overhead
can be offset by the benefits of optimizations enabled by it.

Introspective computers August 12, 1998 lofl



