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As the gap between processor and memory speeds continues to widen, methods for
evaluating memory system designs before they are implemented in hardware are
becoming increasingly important. One such method, trace-driven memory
simulation, has been the subject of intense interest among researchers and has, as
a result, enjoyed rapid development and substantial improvements during the past
decade. This article surveys and analyzes these developments by establishing
criteria for evaluating trace-driven methods, and then applies these criteria to
describe, categorize, and compare over 50 trace-driven simulation tools. We discuss
the strengths and weaknesses of different approaches and show that no single
method is best when all criteria, including accuracy, speed, memory, flexibility,
portability, expense, and ease of use are considered. In a concluding section, we
examine fundamental limitations to trace-driven simulation, and survey some
recent developments in memory simulation that may overcome these bottlenecks.
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1. INTRODUCTION

It is well known that the increasing gap
between processor and main memory
speeds is one of the primary bottlenecks
to good overall computer system perfor-
mance. The traditional solution to this

problem is to build small fast memories
(caches) to hold recently used data and
instructions close to the processor for
quicker access [Smith 1982]. During the
past decade, microprocessor clock rates
have increased at a rate of 40% per
year, while main memory (DRAM)
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speeds have increased at a rate of only
about 11% per year [Upton 1994]. This
trend has made modern computer sys-
tems increasingly dependent on caches.
A case in point: disabling the cache of
the VAX 11/780, a machine introduced
in the late 1970s, would have increased
its workload runtimes by a factor of
only 1.6 [Jouppi 1990], whereas dis-
abling the cache of the HP 9000/735, a
more recent machine introduced in the
early 1990s, would cause workloads to
slow by a factor of 15 [Upton 1994].

It is clear that these trends are mak-
ing overall system performance highly
sensitive to even minor adjustments in
cache designs. As a result, memory sys-
tem designers are becoming increas-
ingly dependent on methods for evaluat-
ing design options before having to
commit them to actual implementation.
One such method is to write a program
that simulates the behavior of a pro-
posed memory system design, and then
to apply a sequence of memory refer-
ences to the simulation model to mimic
the way that a real processor might
exercise the design. The sequence of
memory references is called an address
trace, and the method is called trace-
driven memory simulation. Although
conceptually simple, a number of factors
make trace-driven simulation difficult
in practice. Collecting a complete and
detailed address trace may be hard, es-
pecially if it is to represent a complex
workload consisting of multiple pro-
cesses, the operating system, and dy-
namically linked or dynamically com-
piled code. Another practical problem is
that address traces are typically very
large, potentially consuming gigabytes
of storage space. Finally, processing a
trace to simulate the performance of a
hypothetical memory design is a time-
consuming task.

During the past 10 years, researchers
working on these problems have made a
number of important advances in trace
collection, trace reduction, and trace
processing. This survey documents
these developments by defining various

criteria for judging and comparing these
different components of trace-driven
simulation. We consider accuracy,
speed, memory usage, flexibility, porta-
bility, expense, and ease of use in an
analysis and comparison of over 50 ac-
tual implementations of recent trace-
driven simulation tools. We discuss
which methods are best under which
circumstances, and comment on funda-
mental limitations to trace-driven simu-
lation in general. Finally, we conclude
this survey with a description of recent
developments in memory system simu-
lation that may overcome fundamental
bottlenecks to strict trace-driven simu-
lation.

2. SCOPE, RELATED SURVEYS, AND
ORGANIZATION

Trace-driven simulation has been used
to evaluate memory systems for de-
cades. In his survey of cache memories,
A. J. Smith [1982] gives examples of
trace-driven memory system studies
that date as far back as 1966, and sev-
eral surveys of trace-driven techniques
have been written since then [Holliday
1991; Kaeli 1991; Stunkel et al. 1991;
Cmelik and Keppel 1994]. Holliday
[1991] examined the topic for uniproces-
sor and multiprocessor memory system
design and Stunkel et al. [1991] studied
trace-driven simulation in the specific
context of multiprocessor design. Pierce
et al. [1995] surveyed one aspect of
trace collection based on static code an-
notation techniques, and Cmelik and
Keppel [1994] surveyed trace collectors
based on code emulation.

This survey distinguishes itself from
the others in that it is more up to date,
and in its scope. Numerous develop-
ments in trace-driven simulation during
the past five years warrant a new sur-
vey of tools and methods that have not
been previously reviewed. This survey
is broader in scope than the surveys by
Pierce et al. and Cmelik and Keppel, in
that it considers all aspects of trace-
driven simulation, from trace collection
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and trace reduction to trace processing.
On the other hand, its scope is more
limited, yet more detailed, than the sur-
veys by Holliday and Stunkel et al. in
that it focuses mainly on uniprocessor
memory simulation, but pays greater
attention to tools capable of tracing
multiprocess workloads and the operat-
ing system.

We do not examine analytical meth-
ods for predicting memory system per-
formance. A good starting point for
study of these techniques is Agarwal et
al. [1989]. Although trace-driven meth-
ods have been successfully applied to
other domains of computer architecture,
such as the simulation of superscalar
processor architecture, or the design of
I/O systems, this survey focuses on
trace-driven memory system simulation
only. Memory performance can also be
measured with hardware-based counters
that keep track of events such as cache
misses in a running system. Although
useful for determining the memory per-
formance of an existing machine, such
counters are unable to predict the perfor-
mance of hypothetical memory designs.
We do not study them here, but several
examples can be found in Emer and Clark
[1984], Clark et al. [1985], IBM [1990],
Nagle et al. [1992], Digital [1992], and
Cvetanovic and Bhandarkar [1994].

We begin this survey by establishing
several general criteria for evaluating
trace-driven simulation tools in Section
3. Sections 4 through 7 examine the
different stages of trace-driven simula-
tion, and Section 8 studies some new
methods for memory simulation that ex-
tend beyond the traditional trace-driven
paradigm. Section 9 concludes the sur-
vey with a summary.

This survey makes frequent use of
tables to summarize the key features,
performance characteristics, and origi-
nal references for each of the trace-
driven simulation tools discussed in the
main body of text. This organization
enables the reader to approach the ma-
terial at several levels of detail. We

suggest a reading of Section 3, the open-
ing paragraphs of Sections 4 through 7,
and an examination of each of the ac-
companying tables to obtain a good cur-
sory introduction to the field. A reader
desiring further information can then
read the remainder of the body text in
greater detail. The original papers
themselves, of course, offer the greatest
level of detail, and their references can
be found quickly in the summary tables
and the bibliography at the end of the
survey.

3. GENERAL EVALUATION CRITERIA AND
METRICS

A trace-driven memory simulation is
sometimes viewed as consisting of three
main stages: trace collection, trace re-
duction, and trace processing [Holliday
1991] (see Figure 1). Trace collection is
the process of determining the exact
sequence of memory references made by
some workload of interest. Because the
resulting address traces can be very
large, trace-reduction techniques are of-
ten used to remove unneeded or redun-
dant data from a full address trace. In
the final stage, trace processing, the
trace is fed to a program that simulates
the behavior of a hypothetical memory
system. To form a complete trace-driven
simulation system, the individual
stages of trace-driven simulation must
be connected through trace interfaces so
that trace data can flow from one stage
to the next.

In Sections 3 through 7, we examine
each of the preceding components in
greater detail, but it is helpful to define,
at the outset, some general criteria for
judging and comparing different trace-
driven simulation tools.1 Perhaps the
most important criterion is accuracy,
which we loosely define in terms of per-
cent error in some performance metric

1 Some evaluation criteria apply to only a specific
stage of trace-driven simulation, so we cover them
in future sections where the details are more
relevant.
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such as miss ratio or misses per instruc-
tion:

Error 5 3 (True Performance
2 Simulated Performance)

(True Performance)
4 z 100%. (1)

Error is often difficult to determine in
practice because true performance may
not be known, or because it may vary
from run to run of a given workload.
Furthermore, accuracy is affected by
many factors, such as the “representa-
tiveness” of the chosen workload, the
quality of the collected address trace,
the way that the trace is reduced, and
the level of detail modeled by the trace-
driven memory simulator. Although it
may be difficult to determine from
which of these factors some component
of error originates, it is important to

understand the nature of these errors,
and how they can be minimized.

Ideally, a workload suite should be
selected in a way that represents the
environment in which the memory sys-
tem is expected to perform. The memory
system might be intended for commer-
cial applications (database, spread-
sheet, etc.), for engineering applications
(computer-aided design, circuit simula-
tion, etc.), for embedded applications
(e.g., a postscript interpreter in a laser
printer), or for some other purpose.
Studies have shown that the differences
between these types of workloads is
substantial [Gee et al. 1993; Maynard et
al. 1994; Uhlig et al. 1995; Romer et al.
1996], so good workload selection is cru-
cial—even the most perfect trace acqui-
sition and simulation tools cannot over-

Figure 1. Three stages of trace-driven simulation.
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come the bias in predicted performance
that results if this stage of the process
is not executed with care.

We explore, in the next section, some
reasons why a collected trace might dif-
fer from the actual stream of memory
references generated by a workload, but
it is easy to see at this point in the
discussion why differences are impor-
tant. Many trace-collection tools ex-
clude, for example, memory references
made by the operating system. Exclud-
ing the OS, which may constitute a
large fraction of a workload’s activity, is
bound to affect simulation results [Chen
and Bershad 1993; Nagle et al. 1993;
Nagle et al. 1994].

When we look at trace reduction in
Section 5 we see that some methods
achieve higher degrees of reduction at
the expense of lost trace information.
When this happens, we can use a modi-
fied form of Equation (1) to measure the
effects:

Error

5 3 (Measurements with Full Trace
—Measurements with Reduced Trace)

(Measurements with Full Trace)
4 z 100%.

(2)

Errors can also come from the final,
trace-processing stage, where a memory
system’s behavior is simulated. Such er-
rors arise whenever the simulator fails
to model the precise behavior of the
design under study, a task that is be-
coming increasingly difficult as proces-
sors move to memory systems that sup-
port features such as prefetching and
nonblocking caches.

A second criterion by which each of
the stages of trace-driven simulation
can be evaluated is speed. The rate per
second at which addresses are collected,
reduced, or processed is one natural
way to measure speed, but this metric
makes it difficult to compare trace col-
lectors or processors that have been im-
plemented on different hardware plat-
forms. Because the number of addresses
processed per second by a particular
trace processor is a function of the

speed of the host hardware on which it
is implemented, it is not meaningful to
compare this rate against a different
trace-processing method implemented
on older or slower host hardware. To
overcome this difficulty, we report all
speeds in terms of slowdown relative to
the host hardware from which traces
are collected or on which they are pro-
cessed. Depending on the context, we
compute slowdowns in a variety of
ways:

Slowdown 5
Address Collection Rate

Host System Address
Generation Rate

, (3)

Slowdown 5
Address Processing Rate

Host System Address
Generation Rate

, (4)

Slowdown 5
Total Simulation Time

Normal Host System
Execution Time

. (5)

Because each of these definitions di-
vides by the speed of the host hardware,
they enable an approximate comparison
of two methods implemented on differ-
ent hosts.

Some of the trace-driven simulation
techniques that we examine can reduce
overall slowdowns. We report their ef-
fectiveness in terms of speedups, which
divide slowdowns to obtain overall slow-
downs:

Overall Slowdown 5
Slowdown

Speedup
. (6)

A third general evaluation criterion is
the amount of extra memory used by a
tool. Depending on the circumstances,
memory can refer to secondary storage
(disk or tape), as well as primary stor-
age (main memory). As with speed, it is
often not meaningful to report memory
usage in terms of bytes because differ-
ent workloads running on different
hosts may begin with substantially dif-
ferent memory requirements. Therefore,
whenever possible, we report memory
usage as an expansion factor or over-
head based on the usual memory re-
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quired by the workload running on the
host machine:

Memory Overhead 5
Additional Memory Required

Normal Host Memory Required
.

(7)

Additional memory can be required at
each stage. Some trace-collection meth-
ods annotate or emulate workloads,
causing them to expand in size, some
trace-processors use complex data struc-
tures that are memory intensive, and
trace interfaces use additional memory
to buffer trace data as they pass from
stage to stage. The purpose of the sec-
ond stage, trace reduction, is to reduce
these memory requirements. We mea-
sure the effectiveness of trace reduction
in terms of a memory reduction factor:

Reduction Factor 5
Full Address Trace Size

Reduced Address Trace Size
. (8)

In addition to accuracy, speed, and
memory, there are other general evalua-
tion criteria that recur throughout this
survey. A tool has high portability if it
is easy to re-implement it on different
host hardware. It has flexibility if it is
able to be used for the simulation of a
wide range of memory parameters
(cache size, line size, associativity, re-
placement policy, etc.) and for collecting
a broad range of performance metrics
(miss ratio, misses per instruction, cy-
cles per instruction, etc.). By expense we
mean the cost of any hardware or spe-
cial monitoring equipment required
solely for the purposes of conducting
simulations. Finally, ease of use refers
to the amount of effort required of the
end-user to learn and to operate the
trace-driven simulator once it has been
developed.

4. TRACE COLLECTION

To ensure accurate simulations, col-
lected address traces should be as close
as possible to the actual stream of mem-
ory references made by a workload
when running on a real system. Trace
quality can be evaluated based on the
completeness and detail in a trace, or on

the degree of distortion that it contains.
A complete trace includes all memory
references made by each component of
the system, including all user-level pro-
cesses and the operating system kernel.
User-level processes include not only
applications, but also OS server and
daemon processes that provide services
such as a file system or network access.
Complete traces should also include dy-
namically compiled or dynamically
linked code, which is becoming increas-
ingly important in applications such as
processor or operating system emula-
tion [Nagle et al. 1994; Cmelik and Kep-
pel 1994]. An ideal detailed trace is one
that is annotated with information be-
yond simple raw addresses. Useful an-
notations include changes in VM page-
table state for translating between
physical and virtual addresses, context
switch points with identifiers specifying
newly activated processes, and tags that
mark each address with a reference
type (read, write, execute), size (word,
halfword, byte), and a timestamp.
Traces should be undistorted so that
they do not include any additional mem-
ory references, or references that ap-
pear out of order relative to the actual
reference stream of the workload had it
not been monitored. Common forms of
distortion include trace discontinuities,
which occur when tracing must stop be-
cause a trace buffer is not large enough
to continue recording workload memory
references, and time dilation and mem-
ory dilation, which occur when the trac-
ing method causes a monitored work-
load to run slower, or to consume more
memory than it normally would.

In addition to the three aspects of
trace quality described, a good trace
collector exhibits other characteristics
as well. In particular, portability, both
in moving to other machines of the same
type and to machines that are architec-
turally different, is important. Finally,
an ideal trace collector should be fast,
inexpensive, and easy to operate.

Address traces have been extracted at
virtually every system level, from the
circuit and microcode levels to the com-
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piler and operating system levels. (see
Figure 2). We organize the remainder of
this section accordingly, starting at the
lower hardware levels.

4.1 External Hardware Probes

A straightforward method for collecting
address traces is to record signals from
electrical probes physically connected to
the address bus of a host computer
while it runs a workload. The address
and control signals are fed into an ex-
ternal memory buffer at the full speed
of the monitored host system, and when
the buffer fills, its contents are trans-
ferred to a standard storage device,
such as tape or disk, so that it can be
processed at a later time. If a long,
continuous address trace is desired,
then the buffer must either be very
large or there must be some way to stall
the host whenever the buffer becomes
full. It is usually only possible to stall
the processor—external I/O devices,
such as disks or network controllers
usually must be permitted to continue
operating. If there is no way to stall the
system, then several discontinuous ad-
dress-trace samples can be acquired and
concatenated. In either case, the result-
ing trace exhibits a form of distortion
that we call trace discontinuity. Table I

summarizes several probe-based trace
collectors recently described in the liter-
ature. We discuss each in greater detail
in the following.

Most commercial logic analyzers pro-
vide the necessary hardware to con-
struct a probe-based trace collector
[Tektronix 1994; Hewlett-Packard
1991]. Alexander et al. [1985, 1986] con-
nected a logic analyzer to a National
Semiconductor 32016-based worksta-
tion running Genix to collect address
traces for TLB and cache simulation.
The small size of the trace buffer (4096
entries of 32 bits each) necessitated the
design of circuitry to place the processor
in a stalled state while the buffer was
unloaded to a secondary storage device.
A similar approach was used in the
Monster monitoring system by a group
including the authors of this survey
[Nagle et al. 1992]. Monster consists of
a DAS 9200 logic analyzer connected to
an R2000-based DECstation 3100. The
operating system kernel was modified
to stall the machine in a software loop,
avoiding the need for any additional
stalling hardware. Some logic analyzers
provide interchangeable probes to sup-
port multiple architectures. The DAS
9200, for example, has probe modules
for most popular microprocessors, a

Figure 2. Levels of system abstraction and trace collection methods.
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flexibility that Fuentes [1993] exploited
to collect addresses from both Alpha-
and Pentium-based workstations.

A problem with hardware monitors
based on logic analyzers is that their
trace-buffer sizes are often relatively
small (4 K-entries to 128 K-entries),
resulting either in frequent processor
stalls or smaller trace samples, and
thus greater trace distortion due to dis-
continuities. Special-purpose hardware
with very large, high-speed memories
has been built to treat this problem.
Biomation Corporation [1991] builds a
trace-collection system with 80 million
trace buffer entries. The trace collector
described in Happel and Jayasumana
[1992] has a 40 Mbyte trace buffer,
large enough to hold 8 million memory
references at a time. The Magellan
Trace Machine (MTM) has a buffer that
can hold 33 million bus transactions
[Fuentes 1993], and recent versions of
the Bach system use similarly large
buffers [Flanagan 1994]. Bach offers the
additional advantage that it supports
monitoring of at least three different
microprocessor architectures (i486,
68030, and SPARC).

The trend towards higher levels of
chip integration creates a problem for
probe-based trace collection. Most re-
cent microprocessors implement at least
their primary caches and TLBs on-chip,
making many of their important ad-
dress and control signals inaccessible to
external probes. Examples of probe-
based trace collectors that are limited in
this way are described in Torrellas et al.

[1992] and Fuentes [1993]. One solution
to this problem is to deactivate on-chip
caches to force all load and store opera-
tions off-chip where they can be de-
tected by external probes. This solution
can, however, perturb the behavior of
the system. Even if the resulting trace
distortion is considered acceptable,
some processors do not support dis-
abling of on-chip caches in a general
way (i.e., in a way that forces all refer-
ences off-chip) [Digital 1992; Fuentes
1993]. Although full address traces are
desirable, a trace of just cache misses is
by no means worthless. As we see in
Section 5 on trace reduction, such a
trace can still be used to simulate other
cache configurations, albeit subject to
certain restrictions.

The main advantage of all the probe-
based trace collectors previously de-
scribed is their ability to capture trace
sequences complete with both user and
kernel memory references, and free of
most forms of trace distortion, provided
that the trace buffer is deep enough.
Although the traces are complete, this
does not necessarily mean that they are
easy to interpret. Hardware events such
as cache misses, integer- and floating-
point-unit stalls, exceptions, and inter-
rupts all must be separated from run
cycles to determine the actual type
(read, write, execute) and size (word,
halfword, byte) of the memory refer-
ences made by a monitored processor. In
processors that implement hardware
prefetching or speculative execution, it
may be difficult or impossible to sepa-

Table I. External Probe-Based Trace Collectors
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rate “true” memory references from
those that occur due to a prefetch that
might not actually be used. Some of
these problems can be overcome by im-
plementing the inverse function of the
processor sequencer, either in the trace-
collecting hardware, or in a trace post-
processing tool [Flanagan 1994; Nagle
et al. 1992]. Because the addresses cap-
tured by a probe-based monitor are usu-
ally physical addresses, special methods
that may require cooperation from the
host OS must be used to reverse-trans-
late addresses to their matching virtual
addresses [Grimsrud 1993]. For similar
reasons, it is often difficult to relate a
given memory reference to the process
that made it without assistance from a
modified OS kernel that emits trace
markers or other annotations as clues
[Torrellas et al. 1992; Nagle et al. 1992;
Fuentes 1993]. These problems all fol-
low from the fact that probe-based trace
collectors are external to the monitored
system and therefore do not have easy
access to operating system data struc-
tures.

A common misconception regarding
trace collection using hardware probes
is that the technique is very fast. Al-
though it is true that acquisition of the
trace proceeds at the full speed of the
monitored system, it is important to
account for the overhead of managing
trace-buffer overflow as well as the time
required to empty the buffer. This over-
head is typically not reported in pub-
lished papers, but because most systems
can unload these buffers only through
some form of relatively low bandwidth
channel (see Table I), this overhead is
necessarily high. For a system where
overhead data are available (Monster),
approximately 12 hours are required to
obtain 11 seconds of real-time system
activity. Fuentes [1993] has reported
that a similar delay of 45 minutes is
required to download about one second
of real-time activity captured by the
MTM system. The overhead from both
these systems comes from moving trace-
buffer data over an Ethernet to a ma-
chine with SCSI-connected disks, and

represents effective slowdowns of more
than a thousand times relative to the
speed of the unmonitored host. Most of
the other systems listed in Table I use
similar or even lower bandwidth inter-
connect to the trace buffer, so their
overheads are comparable or higher. Al-
though trace collection with hardware
probes is time consuming, once the
traces have been captured and stored to
a permanent file they require no special
hardware to use,2 and can be used re-
peatedly to achieve reproducible simula-
tion results.

Hardware probe-based methods share
other common disadvantages. The first
is expense. Logic analyzers with deep
trace memories cost from $50,000 to
$200,000 [Tektronix 1994; Hewlett-
Packard 1991]. These amounts are
probably low compared to the engineer-
ing costs associated with designing cus-
tom hardware as in Flanagan et al.
[1992] or Torrellas [1992]. A second
problem is portability. Although logic
analyzers like the DAS 9200 support
probes for most popular microproces-
sors, it is often necessary to physically
modify the motherboard or chassis of
the monitored system to enable probe
access to the signals of interest [Nagle
et al. 1992; Fuentes 1994]. These sys-
tems also require an understanding of
the electrical issues concerning the con-
nection of probes to running hardware,
and are therefore typically fragile, sen-
sitive to their operating environment,
and difficult to learn and operate.

As previously noted, the advent of
on-chip caches is making it increasingly
difficult to build trace collection hard-
ware as an afterthought. The future of
probe-based trace collection therefore
depends mainly on the level of support
designed into systems for this task. A
small, on-chip trace buffer that traps to
the operating system kernel whenever
it becomes full is an example of the sort

2 The Monster traces, complete with trace-inter-
preting tools, are available to the general research
community and can be obtained by contacting the
authors of this survey.
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of support that could be provided. How-
ever, even a very small buffer of 2048
entries with 32-bits per entry (8
K-bytes) is about the size of on-chip
caches in current microprocessors
[Nagle et al. 1994] and thus would be
relatively costly in terms of chip area.
An alternative approach would be to
send certain key internal signals
through the microprocessor package
pins so that they could be monitored
externally. We are not aware of any
existing microprocessor that includes
documented monitoring support of this
type.

4.2 Microcode Modification

The high cost of circuit-level probing
has motivated many researchers to de-
velop methods for collecting traces at
higher levels of system abstraction. One
such alternative is to collect traces at
the borderline between the hardware
and software levels of a system in mi-
crocode (see Figure 2). From the begin-
nings of the IBM 360 series (1964) until
the DEC VAX machines, the most com-
mon method for implementing control
logic was microcode [Wilkes 1969].
When implemented off-chip, a micro-
code memory was often writable or
could be modified through replacement,
making it possible to change the behav-
ior of instructions, or to support multi-
ple instruction sets. Agarwal realized
that this mechanism made it possible to
collect address traces [Agarwal et al.
1986, 1988]. He modified the microcode
on a VAX 8200 to cause all instructions
to deposit the addresses of their mem-
ory references into a reserved area of
main memory as a side effect of their
execution.

This method, which Agarwal called
address tracing using microcode
(ATUM), offers a number of advan-
tages. The first is completeness. Be-
cause the microcode runs beneath the
operating system, all user and kernel
references are captured, as well as those
from dynamically compiled and dynam-
ically linked code. Because ATUM has

access to internal system state, it is
easily able to annotate traces with ac-
cess-type tags, context switch points,
and page-map information. Another ad-
vantage is speed. ATUM acquires ad-
dress traces with a slowdown of only
about 10 to 20, and because the ad-
dresses can be processed directly out of
the trace buffer in main memory, there
is no buffer unloading overhead as with
external probe-based trace collection.
Finally, no additional hardware is re-
quired. The only cost associated with
ATUM is the engineering effort re-
quired to modify microcode to produce
the desired results.

The ATUM method suffers a few mi-
nor disadvantages and one major one.
First, ATUM traces exhibit some discon-
tinuity distortion because the processor
is not stalled when the trace buffer be-
comes full. Buffer size could be in-
creased only up to a certain point be-
cause it took away from the usable
memory of the host system. Agarwal
has developed a method, called trace
stitching, to counter this problem [Agar-
wal 1989]. Microcode modification also
introduces another form of trace distor-
tion, commonly called time dilation. Be-
cause instructions take 10 to 20 times
as long to execute as they normally
would, external devices such as disks
and network controllers appear to the
workload to be faster than they actually
are, and interrupts from the system
clock occur more frequently, thus
changing the workload’s behavior.

The primary disadvantage of the mi-
crocode-modification technique is that
the technique is now effectively obsolete
because most new microprocessors use
hardwired control or have an on-chip
microcode memory that is not easily
modified. The fundamental idea behind
microcode modification—augmenting
the interpretation of instructions to
generate trace addresses as a side effect
of their execution—can, however, be im-
plemented at other levels in a system.
This has been made easier by some of
the very trends that have made micro-
code modification obsolete. Hardwired

Trace-Driven Memory Simulation • 137

ACM Computing Surveys, Vol. 29, No. 2, June 1997



control, for example, has been made
possible (or at least easier) with the
advent of RISC instruction sets [Hen-
nessy and Patterson 1996]. The rela-
tively simple and uniform coding of
RISC instruction sets has also made it
easier to develop fast instruction-set
emulators and binary-rewriting tools for
annotating executables to produce
traces as a side effect of their normal
execution. We examine these tools in
the following sections on instruction-set
emulation and code annotation.

4.3 Instruction-Set Emulation

An instruction-set architecture (ISA) is
the collection of instructions that de-
fines the interface between hardware
and software for a particular computer
system. A microcode engine, as de-
scribed in the previous section, is an
ISA interpreter that is implemented in
hardware. It is also possible to interpret
an instruction set in software through
the use of an instruction-set emulator.
Emulators typically execute one in-
struction set (the target ISA) in terms of
another instruction set (the host ISA)
and are usually used to enable software
development for a machine that has not
yet been built, or to ease the transition
from an older ISA to a newer one [Sites
et al. 1992]. As with microcode, an in-
struction-set emulator can be modified
to cause an emulated program to gener-
ate address traces as a side-effect of its
execution.

Conventional wisdom holds that in-
struction-set emulation is very ineffi-

cient, with slowdowns estimated to be
in the range of 1,000 to 10,000.3 The
degree of slowdown is clearly related to
the level of emulation detail. For some
applications, such as the verification of
a processor’s logic design, the simula-
tion detail required is very high and the
corresponding slowdowns may agree
with those cited. In the context of this
review, however, we consider an in-
struction-set emulator to be sufficiently
detailed for the purposes of address-
trace collection if it can produce an ac-
cessible trace of memory references
made by the instructions that it emu-
lates. Given this minimal requirement,
there are several recent examples of
instruction-set emulators that have
achieved slowdowns much lower than
1,000 (see Table II).

Spa [Cmelik and Keppel 1993] and
Mable [Davies et al. 1994] are examples
of emulators that use straightforward
iterative interpretation (see top of Fig-
ure 3); they work by fetching, decoding,
and then dispatching instructions one
at a time in an iterative emulation loop,
re-interpreting instructions each time
they are encountered. Instructions are
fetched by reading the contents of the
emulated program’s text segment, and
are decoded through a series of mask
and shift operations to extract the vari-
ous fields of the instruction (opcode,
register, specifiers, etc.). Once an in-

3 Please see Agarwal [1989], Wall [1989], Borg et
al. [1989], Stunkel et al. [1991], and Flanagan et
al. [1992].

Table II. Instruction-Set Emulators that Support Trace Collection
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struction has been decoded, it is emu-
lated (dispatched) by updating the ma-
chine state, such as the emulated
register set, which can be stored in
memory as a virtual register data struc-
ture (as in Mable), or which may be held
in the actual hardware registers of the
host machine (as is done for part of the
register set in Spa). An iterative inter-
preter may use some special features of
the host machine to speed instruction
dispatch,4 but this final step is more

commonly preformed by simply jumping
to a small subroutine or handler that
updates machine state as dictated by
the instruction’s semantics (e.g., updat-
ing a register with the results of an add
or load operation). The reported slow-

4 Spa, for example, exploits an artifact of the
SPARC architecture called delayed branching.

Spa issues two branch instructions immediately
next to each other, with the second falling in the
delay slot of the first. The first branch is to the
instruction to be emulated, and the second branch
is back to the interpreter. This technique enables
Spa to “emulate” the instructions from a pro-
gram’s text segment via direct execution, while at
the same time allowing the interpreter loop to
maintain control of execution.

Figure 3. Some emulation methods.
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downs for iterative emulators such as
Spa and Mable range from 20 to about
600, but these figures should be inter-
preted carefully because larger slow-
downs may represent the time required
to emulate processor activity that is not
strictly required to generate address
traces. The range of Mable slowdowns,
for example, includes the additional
time to simulate the pipeline of a dual-
issue superscalar processor.

Some interpreters avoid the cost of
repeatedly decoding instructions by sav-
ing predecoded instructions in a special
table or cache (see middle of Figure 3).
A predecoded instruction typically in-
cludes a pointer to the handler for the
instruction, as well as pointers to the
memory locations that represent the
registers on which the instruction oper-
ates. The register pointers save both
decoding time as well as time in the
instruction handler, because fewer in-
structions are required to compute the
memory address of a virtual register.
An example of such an emulator is
SPIM, which reads and translates a
MIPS-I executable, in its entirety, to an
intermediate representation understood
by the emulation engine [Larus 1991].
After translation, SPIM can look up and
emulate predecoded instructions with a
slowdown factor of approximately 25.
Talisman [Bedichek 1995] and gsim
[Magnusson 1993] also use a form of
instruction predecoding, but instead of
decoding all instructions of a workload
before it begins running, these emula-
tors predecode instructions lazily, as
they are executed for the first time. By
caching the results, these emulators can
benefit from predecoding without the
initial start-up delay exhibited by
SPIM. Both Talisman and gsim imple-
ment a further optimization, called code
threading, in which the handler for one
instruction directly invokes the handler
for the subsequent instruction, without
having to pass through the dispatch
loop. The slowdowns of Talisman and
gsim are higher than those of SPIM, but
it should be noted that they are com-
plete system simulators that model

caches and memory management units,
as well as I/O devices. MINT, a trace
generator for shared-memory multipro-
cessor simulation, also uses a form of
predecoded interpretation in which a
handler for sequential blocks of code
that do not contain memory references
or branches are formed in native host
code, which can then be quickly dis-
patched via a function pointer [Veenstra
and Fowler 1994]. Veenstra reports
slowdowns for MINT in the range of 20
to 70 for emulation of a single processor,
which is comparable to the slowdowns
of SPIM.

Shade takes instruction decoding a
step further by dynamically compiling
target instructions into equivalent se-
quences of host instructions [Cmelik
and Keppel 1994]. As each instruction is
referenced for the first time, Shade com-
piles it into an efficient sequence of
native instructions that run directly on
the host machine (see bottom of Figure
3). Shade records compiled sequences of
native code in a lookup table, which is
checked by its core emulation loop each
time it dispatches a new instruction. If
a compiled translation already exists, it
is found through the lookup mechanism
and the code sequence need not be
recompiled. Like gsim and Talisman,
Shade’s compile-and-cache method en-
ables it to translate source instructions
lazily, only as needed. Shade imple-
ments an optimization similar to code
threading, in which two consecutive
translations are chained together so
that the end of one translation can di-
rectly invoke the beginning of the next
translation, without having to return to
the core emulation loop. Shade supports
address-trace processing by calling us-
er-supplied analyzer code after each in-
struction is emulated. The analyzer
code is given access to the emulation
state, such as addresses generated by
the previous instruction, so that mem-
ory simulations are possible. The slow-
downs reported in Table II are for
Shade emulations that generate a trace
of both instruction and data addresses,
which are then passed to a null ana-
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lyzer that does not add overhead to the
emulation process. The resulting slow-
downs (9 to 14) are therefore a good
estimate of the minimal slowdown for
emulator-generated address traces and
demonstrate that fast emulators can,
indeed, be used effectively for this task.

All of these emulators collect refer-
ences from only a single process and
exclude kernel references, so they are
limited with respect to trace complete-
ness. Some of these tools claim to sup-
port multithreaded applications and
emulation of operating system code, but
this statement should be interpreted
carefully. All of these emulators run in
their own user-level process and require
the full support of a host operating sys-
tem. Within this process, they may em-
ulate certain operating system func-
tions by intercepting system calls and
passing them on to the host OS, but this
does not mean that they are able to
monitor the address references made by
the actual host OS, nor are they able to
see any references made by any other
user-level processes in the host system.
An important advantage of dynamic em-
ulation is that it can be made to handle
dynamically compiled and dynamically
linked code (Shade is an example). With
respect to trace detail, instruction-set
emulation naturally produces virtual
addresses, and is generally unable to
determine the actual physical addresses
to which these virtual addresses corre-
spond.

Instruction-set emulators generally
share the advantages of high portabil-
ity, flexibility, and ease of use. Several
of the emulators, such as SPIM, are
written entirely in C, making ports to
hosts of several different ISAs possible
[Larus 1991]. Tools that only predecode
target instructions are likely to be more
portable than those that actually com-
pile code that executes directly on the
host. Shade has been used to simulate
several target architectures, one of
which (SPARC-V9) had yet to be imple-
mented at the time the article was writ-
ten [Cmelik and Keppel 1993, 1994]. In
other words, instruction-set emulators

like Shade can collect address traces
from machines that have not yet been
realized in hardware. Some of these em-
ulators are very flexible in the sense
that the analyzer code can specify the
level of trace detail required. Shade an-
alyzers, for example, can specify that
only load data addresses in a specific
address range should be traced [Cmelik
and Keppel 1994]. Ease of use is en-
hanced by the ability of these emulators
to run directly on executable images
created for the target architecture, with
no prior preparation or annotation of
workloads required.

A major disadvantage of instruction-
set emulators is that they build up a
large amount of state. Instructions that
have been translated to an intermediate
representation, or to equivalent host in-
structions, can use an order of magni-
tude more memory than equivalent na-
tive code [Cmelik and Keppel 1994].
Other auxiliary data structures, such as
tables that accelerate the lookup of
translated instructions, boost memory
usage even higher. Actual measure-
ments of memory usage are unavailable
for most of the emulators in Table II,
but for Shade they are reported to be in
the range of 4 to 40 times the usual
memory required by normal native exe-
cution [Cmelik and Keppel 1993, 1994].
Increased memory usage means that
these systems must be equipped with
additional physical memory to handle
large workloads.

4.4 Static Code Annotation

The fastest instruction-set emulators
dynamically translate instructions in
the target ISA to instructions in the
host ISA, and optionally annotate the
host code to produce address traces. Be-
cause these emulators perform transla-
tion at run-time they gain some addi-
tional functionality, such as the ability
to trace dynamically linked or dynami-
cally compiled code. This additional
flexibility comes at some cost, both in
overall execution slowdown and in
memory usage. For the purposes of
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trace collection, it is often acceptable to
trade some flexibility for increased
speed. If the target and host ISAs are
the same and if dynamically changing
code is not of interest, then a workload
can be annotated statically, before run-
time. With this technique, instructions
are inserted around memory operations
in a workload to create a new execut-
able file that deposits a stream of mem-
ory references into a trace buffer as the
workload executes (see Figure 4). Static
code annotation can be performed at the
source (assembly) level, the object-mod-
ule level, or the executable (binary)
level (see Figure 2 and Table III), with
different consequences for both the im-
plementation and the end-user [Stunkel
et al. 1991; Wall 1992; Pierce and
Mudge 1994].

The main advantage of annotating
code at the source level is ease of imple-
mentation. At this level, the task of
relocating the code and data of the an-
notated program can be handled by the
usual assembly and link phases of a
compiler, and more detailed information
about program structure can be used to
optimize code annotation points. Unfor-
tunately, annotation at this level may
render the tool unusable in many situa-
tions because the complete source code
for a workload of interest is often not
available. An early example of code an-
notation performed at the source level is
the TRAPEDS system [Stunkel and
Fuchs 1989]. TRAPEDS adds trace-col-
lecting code and a call to an analyzer

routine at the end of each basic block in
an assembly source file. The resulting
program expands in size by a factor of
about 8 to 10, and its execution is
slowed by about 20 to 30. Some other
tools take greater advantage of the ad-
ditional information about program
structure available at the source level.
Both MPtrace [Eggers et al. 1990] and
AE [Larus 1990] use control-flow analy-
sis to annotate programs in a minimal
way so that they produce a trace of only
significant dynamic events. AE, for ex-
ample, analyzes a program to find those
instructions that contribute to address
calculations. It then determines which
addresses are easy to reconstruct, and
which addresses depend on values that
are difficult or impossible to determine
through static analysis. Larus gives an
example annotation of a simple subrou-
tine that initializes 100 elements in an
array structure starting from a location
specified as a parameter to the proce-
dure. The starting address is a value
that cannot be known statically, so it is
considered to be a significant event, and
the program is annotated to emit this
value to a trace file. The remaining
addresses, however, can be easily recon-
structed later, given the starting ad-
dress and a description of the striding
pattern through the array, which AE
specifies in a program schema. Given a
trace of significant events, along with
the program schema, Larus describes
how to construct a postprocessing pro-
gram that reconstructs the full trace.

Figure 4. Static code annotation.
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Tracing only significant events reduces
both the size and execution time of the
annotated program. Programs anno-
tated by MPtrace, for example, are only
about 4 to 6 times larger than usual,
and exhibit slowdowns of only 2 to 3,
not including the time to regenerate the
full trace. Eggers et al. argue that it is
useful to postpone full-trace reconstruc-
tion until after the workload runs be-
cause this minimizes trace distortion
due to time dilation, a source of error
that can be substantial in the case of
multiprocessor memory simulation.
TangoLite [Goldschmidt and Hennessy
1993], a successor to Tango [Davis et al.
1991], minimizes the effects of time di-
lation in a different way by determining
event order through event-driven simu-
lation. It is important to include the
time to regenerate the full address trace
when considering the speed of these
methods. In the case of AE, trace regen-
eration increases overall slowdowns to
about 20 to 60. Unfortunately, the
trace-regeneration time is not given in
terms of slowdowns for MPtrace, al-
though Eggers et al. do report that trace
regeneration is the most time-consum-
ing step in their system, producing only
6,000 addresses per second. Assuming a
processor that generates 6 million mem-
ory references per second (a conserva-
tive estimate for machine speeds at the
time the paper was written), 6,000 ad-

dresses per second corresponds to a
slowdown of approximately 1,000.

Performing annotation at the object-
module level can help to simplify the
preparation of a workload. In particu-
lar, source code for library object mod-
ules is no longer needed. Wall [1992]
argues that annotating code at this
level is only slightly more difficult be-
cause data-relocation tables and symbol
tables are still available. An early ex-
ample of this form of code annotation is
Epoxie, implemented for the DEC Titan
[Borg et al. 1989, 1990; Mogul and Borg
1991], and later ported to MIPS-based
DECstations [Chen 1993]. In both of
these systems, slowdowns for the anno-
tated programs ranged from about 8 to
15 and code expansion ranged from 2 to 5.

Code annotation at the executable
level is the most convenient to the end-
user because it is not necessary to anno-
tate a collection of source and/or object
files to produce the final program. In-
stead, a single command applied to one
executable file image generates the de-
sired annotated program. Unfortunately
annotation at this level is also the most
difficult to implement because execut-
able files are often stripped of symbol-
table information. A significant amount
of analysis may be required to properly
relocate code and data after trace-gen-
erating instructions have been added to
the program [Pierce and Mudge 1994].

Table III. Static Code Annotators
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Despite these difficulties, there exist
several program-annotation tools that
operate at the executable level. An early
example is Pixie, which operates on
MIPS executables [MIPS 1988; Smith
1991]. The popularity of Pixie has
prompted the development of several
similar programs that work on other
instruction-set architectures. These in-
clude Goblin [Stephens et al. 1991] and
IDtrace [Pierce and Mudge 1994], which
operate on RS/6000 and i486 binaries,
respectively. A second generation of the
AE tool, called Qpt, can operate on both
MIPS and SPARC binaries [Larus
1993]. The slowdowns and memory
overheads for each of these static anno-
tators compare favorably with the best
dynamic emulators discussed in the pre-
vious section.

A common problem with many code
annotators is that they produce traces
with an inflexible level of detail, requir-
ing a user to select the monitoring of
either data or instruction references (or
both) with an all-or-nothing switch.
Many tools are similarly rigid in the
mechanism that they use to communi-
cate addresses, typically forcing the
trace through a file or pipe interface to
another process containing the trace
processor. Some more recent tools, such
as ATOM [Srivastava and Eustace
1994; Eustace and Srivastava 1994] and
EEL [Larus 1995] overcome these limi-
tations. ATOM offers a flexible interface
that enables a user to specify how to
annotate each individual instruction,
basic block, and procedure of an execut-
able file; at each possible annotation
point the user can specify the machine
state to extract, such as register values
or addresses, as well as an analysis
routine to process the extracted data. If
no annotation is desired at a given loca-
tion, ATOM does not add it, thus en-
abling a minimal degree of annotation
to be specified for a given application.
For I-cache simulation, for example, a
simulator writer can specify that only
instruction references be annotated,
and that a specific I-cache analysis rou-
tine be called at these points. Eustace

and Srivastava [1994] report that ad-
dresses for cache simulation can be col-
lected from ATOM-annotated SPEC92
benchmarks with slowdowns of between
6 and 13. EEL is a similarly flexible
executable editor that is the basis of a
new version of qpt as well as a high-
speed cache simulator named Fast-
Cache [Lebeck and Wood 1995], which
we discuss in Section 8.

In general, code annotators are not
capable of monitoring multiprocess5

workloads or the operating system ker-
nel, but there are some exceptions. Borg
et al. [1989, 1990] and Mogul and Borg
[1991] describe modifications to the Ti-
tan operating system, Tunix, that sup-
port tracing of multiple workload pro-
cesses by Epoxie. Tunix interleaves the
traces generated by multiple processes
into a global trace buffer that is period-
ically emptied by a trace-processing pro-
gram. These researchers also experi-
mented with annotating the Tunix
kernel itself, although they do not re-
port any results obtained from these
traces [Mogul and Borg 1991]. Chen
continued this work by porting a ver-
sion of Epoxie to a MIPS-based DECsta-
tion running both Ultrix and Mach 3.0
to produce traces from single-process
workloads including the user-level X
and BSD servers, and the kernel itself
[Chen and Bershad 1993; Chen 1994]. A
recent version of ATOM can annotate
OSF/1 kernels, but because ATOM ana-
lyzer routines are linked into each an-
notated executable, there is no straight-
forward way to capture systemwide,
multiprocess activity. For example,
ATOM cannot easily simulate a cache
that is shared among several processes
and the kernel because the analyzer
routines for each executable have no

5 Many of the tracing tools discussed in this sec-
tion were designed to monitor multithreaded
workloads running on a multiprocessor memory
system (e.g., MPtrace, TRAPEDS, TangoLite).
However, the multiple threads in these workloads
run in the same protection domain (process), so
we consider them to be single-process workloads.
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knowledge of the memory references
made in other executables.

By definition, static code annotation
does not handle code that is dynami-
cally compiled at run-time. Dynamically
linked code also poses a problem al-
though some systems, such as Chen’s,
treat this problem in special cases (he
modified the BSD server to cause it to
dynamically map a special annotated
version of the BSD emulation library
into user-level processes that require a
BSD API).

With respect to trace detail, these
methods naturally produce virtual ad-
dresses tagged by access type and size,
and some of the systems that can anno-
tate multiprocess workloads are also
able to tag references with a process
identifier [Borg et al. 1989]. Associating
a true physical address with each vir-
tual address is, however, very difficult
because an annotated program is ex-
panded in size and therefore utilizes
virtual memory very differently than an
unannotated workload would.

The tools that include multiprocess
and kernel references are subject to sev-
eral forms of trace distortion. Trace dis-
continuities occur when the trace buffer
is processed or saved to disk and time-
dilation distortion occurs because the
annotated programs run 10 to 30 times
slower than they normally would. Chen
and Borg et al. note that the effects of
these distortions on clock-interrupt fre-
quency and the CPU scheduler can be
countered by reprogramming the clock-
generation chip [Borg et al. 1989; Chen
and Bershad 1993]. However, a solution
to the problem of apparent I/O device
speedup is not discussed. Borg et al.
discuss a third form of trace distortion
due to annotated code expansion called
memory dilation. This effect can lead to
increased TLB misses and paging activ-
ity. The impact of these effects can be
minimized by adding additional mem-
ory to the system (to avoid paging), and
to emulate, rather than annotate, the
TLB miss handlers (to account for in-
creased TLB misses).

These tools share a number of com-

mon characteristics. First, they are on
average about twice as fast as instruc-
tion-set emulation techniques, although
some of these tools are outperformed by
very efficient emulators, such as Shade.
Second, all of these tools suffer from the
disadvantage that all workload compo-
nents must be prepared prior to being
run. Usually this is not a major concern,
but it can be a time-consuming and
tedious process if a workload consists of
several source or object files. Even for
the tools that avoid source or object-file
annotation, it can be difficult to locate
all of the executables that make up a
complex multiprocess workload. Porta-
bility is generally high for the source-
level tools, such as AE, but decreases as
code modification is postponed until
later stages of the compilation process.
Portability is hampered somewhat in
the case of Chen’s system, where sev-
eral workload components in the kernel
must be annotated by hand in assembly
code. Note that static annotation must
annotate all the code in a program,
whether it actually executes or not. This
is not the case with the instruction-set
emulators, which only need to translate
code that is actually used. This is an
important consideration for very large
executables, such as X applications,
which are often larger than a megabyte,
but only touch a fraction of their text
segment [Chen 1994].

4.5 Single-Step Execution

Figure 2 shows that the highest level of
system abstraction for collecting ad-
dress traces is the operating system.
Most operating systems support some
form of debugging utility that enables a
programmer to step through a program
one instruction at a time to expose er-
rors. This form of debugging is usually
supported in hardware through a sin-
gle-step execution mode, where the pro-
cessor traps into the OS kernel after the
execution of each instruction or basic
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block,6 or by breakpoint instructions
that cause kernel traps whenever they
are executed [Kane and Heinrich 1992;
Intel 1990]. A debugger that supports
single-step execution and examination
of processor state, such as registers, can
be modified to generate both instruc-
tion-address and data-address traces.
Instruction-address traces are produced
by simply recording the value of the
program counter at each execution step.
Data-address traces require instruction
emulation to determine if the current
instruction generates a memory refer-
ence and, if so, the value of that refer-
ence. Examples of studies that describe
the use of traces obtained through sin-
gle-stepping include Wiecek [1982],
Clark et al. [1985], and Winsor [1989].

The main advantages of this method
are low expense, high portability, and
ease of use. With the exception of de-
bugger data structures, little additional
host memory is used. Unfortunately,
slowdowns for this technique are high,
with estimates varying widely from 100
[Agarwal et al. 1988] to 1,000 [Flanagan
et al. 1992] to 10,000 [Holliday 1991].
High slowdowns are usually due to de-
bugger implementations that rely on
the UNIX ptrace ( ) facility which, in
turn, is implemented using UNIX ex-
ception-signal handlers. Recent work on
tuning the exception-delivery path in
UNIX-based systems suggests that
these slowdowns could be cut dramati-
cally [Thekkath and Levy 1994].

Although there is nothing inherent in
this approach that limits traces to a
single process, or to user-only refer-
ences, debuggers typically do impose
these limitations. Similarly, dynami-
cally compiled and dynamically linked
code is usually not supported by debug-
gers. Because only address-trace infor-
mation is desired, a single-step trace-
collection tool could, in principle, be
written from scratch to avoid the over-
heads and single-process limitations of

program debuggers. We are not aware
of any existing trace-collection system
that uses this approach.

Although once very popular [Holliday
1991], single-step execution as a method
for trace collection has essentially been
abandoned in recent years because of
the greater efficiency of other software-
based methods. Recently, however,
some new tools that trap only after cer-
tain events (such as a simulated cache
miss) have led to a resurgence of trap-
based monitoring. We examine some of
these tools near the end of this survey
in Section 8.

4.6 Summary of Trace Collection

Table IV summarizes the general char-
acteristics of each of the trace-collection
methods examined in this section. Be-
cause of the range of capabilities of tools
within each category, and because of the
subjective nature of some of the charac-
teristics (e.g., ease of use), it is difficult
to accurately and fairly summarize all
considerations in a single table. It is
nevertheless worthwhile to attempt to
do so, so that some general conclusions
can be drawn. We begin by describing
how to interpret the table.

For descriptions of trace quality (com-
pleteness, detail, and distortion), a Yes
entry means that most existing imple-
mentations of the method naturally pro-
vide trace data with the given charac-
teristics. A Maybe entry means that the
method does not easily provide this
form of trace data, but there are never-
theless a few existing tools that over-
come these limitations. A No entry
means that there are no existing exam-
ples of a tool in the given category that
provide trace data of the type in ques-
tion, usually because the method makes
it difficult to do so. To make the com-
parisons fair, trace-collection slow-
downs include any additional overhead
required to produce a complete, usable
address trace. This may include the
time required to unload an external
trace buffer (in the case of the probe-
based methods), or to regenerate a com-

6 Please see Digital [1986], AMD [1991, 1993],
Motorola [1993, 1990], and Hewlett-Packard
[1990].
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plete address trace from a significant-
events file (in the case of certain code
annotation methods). Slowdowns do not
include the time required to process the
trace, nor the time to save it to a sec-
ondary storage device. We give a range
of slowdowns for each method, removing
any excessively bad implementations in
any category. Additional Memory re-
quirements include external trace buff-
ers and memory from the simulator host
machine that is consumed either by
trace data or by a workload expanded in
size due to annotation. Factors that de-
termine the Expense of the method in-
clude the purchase of special monitoring
hardware, or any necessary modifica-
tions to the host hardware, such as
changes to the motherboard to make
CPU pins accessible by external probes,
or the purchase of extra physical mem-
ory for the host to satisfy the memory
requirements of the method. Portability
is determined both by the ease with
which the tool can be moved to other
machines of the same type, and to ma-
chines that are architecturally differ-
ent. Finally, Ease-of-Use describes the
amount of effort required of the end-
user to operate the tool once it has been
developed. These last few characteris-
tics require a somewhat subjective eval-

uation which we provide with a rough
High, Medium, or Low ranking.

Despite these qualifications, it is pos-
sible to draw some general conclusions
about how the different trace-collection
methods compare. A first observation is
that high-quality traces are still quite
difficult to obtain. Methods that by their
nature produce complete, detailed, and
undistorted traces (e.g., the probe-based
or microcode-based techniques) are ei-
ther very expensive, hard to port, hard
to use, or outdated. On the other hand,
the techniques that are less expensive
and easier to use and port (e.g., instruc-
tion-set emulation and code annotation)
generally have to fight inherent limita-
tions in the quality of traces that they
can collect, particularly with respect to
completeness (multiprocess and kernel
references). Second, none of the meth-
ods are able to collect complete traces
with a slowdown of less than about 10.
Finally, when all the factors are consid-
ered, no single method for trace collec-
tion is a clear winner, although some,
such as single-step execution, have
clearly dropped from favor. The probe-
based and microcode-based methods
probably produce the highest quality
traces as measured by completeness, de-
tail, and distortion, but their applicabil-

Table IV. Summary of Trace-Collection Methods
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ity could be limited if designers fail to
provide certain types of hardware sup-
port or greater accessibility in future
machines. Code annotation is probably
the most popular form of trace collection
because of its low cost, relatively high
speed, and because of recent develop-
ments that enable it to collect multipro-
cess and kernel references. However,
advances in instruction-set emulation
speeds and the greater flexibility of this
method may lead to the increased use of
this alternative to static code annota-
tion in the future.

5. TRACE REDUCTION

Once an address trace has been col-
lected, it is input to a trace-processing
simulator or stored on disk or tape for
processing at a later time. Considering
that a modern uniprocessor operating at
100 MHz can easily produce half a giga-
byte of address-trace data every second,
there has been considerable interest in
finding ways to reduce the enormous
size of traces to minimize both process-
ing and storage requirements. Fortu-
nately address traces exhibit high spa-
tial and temporal locality, so there are
many opportunities for achieving high
factors of trace reduction. Several stud-
ies have, in fact, shown that the infor-
mation content of address traces tends
to be very low, suggesting that trace
compaction or compression techniques
could be quite effective [Hammerstrom

and Davidson 1977; Becker and Park
1993; Pleszkun 1994].

There are several criteria for evaluat-
ing and comparing different methods of
trace reduction (see Table V). The first,
of course, is the trace reduction factor.
The time required to reconstruct or de-
compress a trace is also important be-
cause it directly affects simulation
times. Ideally, trace reduction achieves
high factors of compression without re-
ducing the accuracy of simulations per-
formed by the reduced traces. It may,
however, be acceptable to relax the con-
straint of exact trace reduction if higher
factors of compression can be attained
and if the resulting simulation error is
low. If results are not exact, Table V
shows the amount of error and its rela-
tionship to the parameters of the mem-
ory structure being simulated. Many
trace reduction methods make assump-
tions about the type of memory simula-
tion that will be performed using the
reduced trace. Table V shows when and
how these assumptions imply restric-
tions on the use of the reduced trace.

5.1 Trace Compression

One approach to trace reduction is to
apply standard data-compression algo-
rithms. As an example, the UNIX com-
press utility, which implements the
Lempel-Ziv algorithm [Ziv and Lempel
1976], achieves a compression factor of
about 3 to 5 on typical address traces

Table V. Methods for Address Trace Reduction
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[Agarwal and Huffman 1990]. Samples
showed that much higher degrees of
compression can be attained if a full
address trace is first preprocessed to
produce a difference trace, as is done in
Mache [Samples 1989]. Mache computes
a difference trace by dividing a full ad-
dress trace into substreams according to
some separation rule (see Figure 5). A
simple separation rule is to create one
substream from all instruction refer-
ences, one from all data reads, and one
from all data writes. Since the full trace
will often have labels attached to each
address to identify their type (instruc-
tion fetch, load, store, etc.), it is a sim-
ple matter to determine to which sub-
stream a given address corresponds. As
they are encountered, the first (base)
addresses from each substream are
emitted, along with their identifying
substream labels, to the output differ-
ence trace. The arithmetic difference be-
tween subsequent addresses and their
immediate predecessors within each
substream is then computed, and the
absolute value of this difference is com-
pared against some predetermined
threshold. When the difference is less
than the threshold, only the difference
and the substream label are emitted to
the output. If the difference is greater
than the threshold, then the entire ad-
dress value and label are emitted. The

original, full address trace can be recon-
structed from the difference trace by
starting with the base address in each
substream, and then adding the se-
quence of difference values, step by
step, to obtain a sequence of full address
values.

A difference trace improves trace re-
duction factors for the following rea-
sons. First, the number of bytes re-
quired to encode difference values is
less than that required for full ad-
dresses. Only 16 bits are required to
encode a difference value with a thresh-
old of 8192 and three label types (13
bits for the absolute value of the differ-
ence, 1 sign bit, and 2 bits for the label),
which is one half or one quarter the
amount of data required to specify a full
32-bit or 64-bit address. Second, a dif-
ference trace exposes regularity and
striding patterns in a trace that can be
better exploited by the Lempel-Ziv algo-
rithm. When Samples applied Lempel-
Ziv compression to his difference traces,
overall compression factors increased to
10 to 20 for traces with mixed instruc-
tion and data references, and to as high
as 100 for traces with instruction refer-
ences only. Mache retains the full infor-
mation content of traces, so simulations
using Mache are unrestricted and exact.
However, because the full address trace
must be reconstructed before simula-

Figure 5. Computing a difference trace.
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tion, there is a space, but not a simula-
tion-time savings. In fact, times re-
ported by Samples imply that
decompression can add a slowdown fac-
tor of as much as 200 to trace-driven
simulations.

5.2 Significant-Event Traces

Tools such as MPtrace [Eggers et al.
1990], AE [Larus 1990], and qpt [Larus
1993], which we first described in Sec-
tion 4.4, produce significant-event
traces that are typically much smaller
than full address traces. AE traces, for
example, are 10 to 40 times smaller
than full traces, whereas those from
MPtrace are reported to be as much as
1,000 times smaller. Because these sys-
tems provide a method for reconstruct-
ing the full address trace, they can be
viewed as trace-reduction systems that
annotate a workload to produce a re-
duced trace directly. As with Mache, the
complete trace is regenerated in these
systems, so simulations using these
traces are unrestricted and exact, but
there is no simulation-time savings. As
noted previously, AE and qpt can slow
overall simulations by 20 to 60, whereas
MPtrace can make overall simulation
times as much as three orders of magni-
tude slower.

5.3 Trace Filtering

A designer often has a specific purpose
in mind for a given set of address
traces. The traces might only be used
for cache simulations where the cache
size is larger than some specific mini-
mum size and where the line size is
fixed. In such a situation, a full address
trace can be reduced in size substan-
tially, provided that the resulting re-
duced trace is used only for simulations
in an appropriately constrained design
space. Smith [1977] has suggested two
examples of this form of trace reduction.
He constrained his simulation design
space to fully associative memory struc-
tures (for main-memory page-replace-
ment or TLB simulations), and then de-

vised two methods for trace reduction:
stack deletion and the snapshot method.
With the first method, stack deletion, a
full memory trace is used to simulate an
LRU stack memory. Addresses that hit
in the top D entries of the stack are
discarded, and addresses that miss are
concatenated to form a reduced trace.
The rationale behind this procedure is
that references that hit the LRU stack
are also likely to hit in any fully asso-
ciative main memory or TLB that is
larger in size. Smith’s second technique,
the snapshot method, constructs a re-
duced trace by concatenating snapshots
of memory contents taken at periodic
intervals separated by T, the snapshot
parameter. Smith points out that such a
trace could be acquired at the full speed
of a real machine by periodically inter-
rupting execution and recording the
contents of page reference bits [Prieve
1974]. The rationale for this method is
similar to that of the stack-deletion
method; the memory snapshots capture
the most important references, while fil-
tering repeated references to the same
location. Depending on the values of the
deletion parameter, D, or the snapshot
interval T, Smith reports that trace-size
reductions range from a factor of 5 to
100. When Smith used these reduced
traces for the simulation of various
page-replacement algorithms and com-
pared the results against simulations
with full traces, he found the relative
error to be less than 5%. An advantage
of these methods over those previously
discussed is that the reduced trace can
be used directly by the simulator. This
means that there is no decompression
overhead and the resulting simulations
are much faster than they would be on a
complete address trace. Note, however,
that the simulation speedups (4 to 50)
are not directly proportional to the com-
pression factors (5 to 100). This is be-
cause simulations with reduced traces
result in more misses per trace event
than with simulations on the full trace.
Because processing misses usually re-
quires more time than processing hits,
simulations on the reduced trace take
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more time, per trace event, than they do
on the full trace.

Trace stripping, first suggested by
Puzak [1985] in his dissertation, also
produces reduced traces that can be
used only in a restricted design space. A
full address trace is used to simulate a
small direct-mapped cache with a given
line size, and only the references that
miss this filter cache are saved to form
the reduced trace. Puzak proved that
the trace of misses can be used to per-
form exact simulations of any cache
with greater size or associativity than
that of the filter cache, provided that
the line size is held constant. When
simulating line sizes different than
those of the filter cache, Puzak showed
that some simulation error results, but
it is generally less than 10% and de-
creases with increasing cache associa-
tivity. Wang and Baer [1990] extended
the cache filter concept to enable the
simulation of write-back caches. Their
cache filter is the same as Puzak’s, but
in addition to recording all read misses,
their reduced trace also includes the
first write to any clean cache line. With
both of these methods, the trace reduc-
tion factor is equal to the inverse of the
cache miss ratio. Assuming miss ratios
of 0.05 to 0.10 for small direct-mapped
caches, reduction factors are in the
range of 10 to 20, but as with Smith’s
methods, the simulation speedups may
not be directly proportional to the trace-
reduction factor.

Agarwal and Huffman [1990] noted
that cache filters exploit only temporal,
but not spatial, locality in address trace.
They devised another form of trace fil-
ter, called a block filter, which provides
an additional order of magnitude reduc-

tion in the size of a trace that has
already been cache-filtered. A block fil-
ter takes as input a cache-filtered trace
and two other parameters called the
window size W, and the block size B.
The filter reads a group of W references
at a time and emits only one reference
from each spatial locality in the win-
dow. Two addresses are defined to be-
long to the same spatial locality if they
refer to the same block of B addresses.
The rationale for constructing the re-
duced trace in this way is based on the
theory of stratified sampling [Hodges
and Lehmann 1964], where the strata
correspond to spatial localities. Agarwal
and Huffman show that application of
the block filter can increase overall
trace reduction factors to as high as
100, while keeping the error in simula-
tion results under 10% to 12%.

5.4 Trace Sampling

When faced with a very large (or infi-
nite) set of data to analyze, it is often
helpful to resort to statistical methods
to select a subset, or sample, of the
complete data population. When prop-
erly constructed, a sample can be used
to derive estimates for some statistic of
interest without having to process the
entire data set. A full address trace can
be viewed as a large data set, and tradi-
tional methods for statistical sampling
can therefore be used as another
method for reduction of trace data. Two
basic approaches to trace sampling have
been proposed in the literature: time
sampling [Laha et al. 1988] and set
sampling, which is also known as con-
gruence-class sampling [Puzak 1985]
(see Figure 6). We discuss the pros and

Figure 6. Time and set sampling.

Trace-Driven Memory Simulation • 151

ACM Computing Surveys, Vol. 29, No. 2, June 1997



cons of each method in greater detail in
the following.

Laha et al. [1988] constructed trace
samples by extracting from a full trace
contiguous segments of memory refer-
ences over certain windows of time.
Each trace segment (or trace sample)
was driven into a memory simulator to
obtain an estimate of some performance
metric, such as a miss ratio. The miss-
ratio estimators from each trace seg-
ment were then averaged to form an
estimate of the true performance for the
entire trace. This method, called time
sampling, must be conducted with care
to avoid errors. First, a sufficient num-
ber of trace segments must be collected
(Laha et al. suggest 35) to ensure that
different phases of execution along the
full trace are adequately represented. A
second source of error is due to not
knowing the state of a simulated cache
at the beginning of a trace sample. This
form of error, commonly known as cold-
start bias, occurs because it is not possi-
ble to know whether the initial refer-
ences to each cache set hit or miss. For
the simulation of relatively small caches
(,128 Kbytes), where errors due to cold-
start bias are small, Laha’s study
showed that time samples representing
5 to 20% of the full trace can be used to
simulate caches with less than about
5% relative error.

As simulated cache sizes increase,
cold-start bias becomes an increasingly
significant source of error. Several ad
hoc methods have been proposed to re-
move or reduce this effect. One tech-
nique is to begin measuring miss ratios
only in cache sets that have been
primed (i.e., sets that have become filled
with references from the beginning of
the trace sample) [Laha et al. 1988;
Stone 1993]. Another method is to con-
catenate, or “stitch” together, the indi-
vidual trace samples under the assump-
tion that the state of the cache at the
end of one sample approximates the
true cache state at the beginning of the
subsequent sample [Agarwal et al.
1988]. Still another method is to use the
first half of the references in a trace

sample to partially prime the cache, and
then to simulate the remaining refer-
ences to estimate the miss ratio
[Kessler 1991]. Wood et al. [1991] pro-
posed a more theoretically sound
method for estimating the miss ratio of
unknown references by using renewal
theory. A key observation of Wood’s
model is that the miss ratio of unknown
references (i.e., references to cache sets
that have not yet been filled) is typically
substantially higher than the miss ratio
of the remaining references in the time
sample. Kessler compared and evalu-
ated the effectiveness of several bias-
reducing techniques when simulating
large (multimegabyte) caches, and con-
cluded that Wood’s method generally
performed best, although even it was
unable to compensate for trace samples
that were too short relative to the simu-
lated cache size [Kessler 1991]. Kessler
suggested two rules of thumb for decid-
ing when the trace-sample length is suf-
ficiently large to avoid errors when us-
ing Wood’s method: the trace sample
must fill at least half of the cache, and
there must be at least as many misses
to full sets as cold-start misses [Kessler
1991].

An alternative sampling method is to
select memory references from a full
trace on the basis of the cache set or
sets to which they map. This method is
commonly called set sampling or con-
gruence-class sampling [Puzak 1985;
Kessler 1991]. With set sampling, the
reduced trace is constructed by defining
the parameters (size, associativity, line
size) of some cache, and then keeping
exactly those addresses that reference a
certain collection of cache sets, while
discarding references to the other sets.
Cache simulations are performed on
each sampled set individually to obtain
several estimates of some performance
metric. Then, as with time sampling,
the estimators are combined to form an
overall estimate of cache performance.
Because each set in the sample sees all
the references made to it by the full
trace, this method does not suffer from
cold-start bias as does time sampling.
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Set sampling does, however, introduce
some complications of its own.

The first issue to resolve is the
method for selecting which cache sets to
sample. One approach is to select the
sampled sets randomly (given a cache of
a specific size, associativity, and line
size). Though simple, this approach suf-
fers from the disadvantage that an en-
tirely different set sample might need to
be obtained to simulate caches with a
different set of parameters. This is so
because randomly selected set samples
for two caches may be incompatible
whenever the set-indexing bits for the
two caches differ. To overcome this
problem, Kessler [1991] proposed con-
stant-bits selection, which includes in
the trace sample all addresses with the
same constant value in certain address
bits. A simple example, drawn from
Kessler’s explanation, helps to illustrate
the technique. Assume, first, that cache
sets are selected (indexed) by the low-
est-order address bits immediately to
the left of the address bits that specify
the offset within a line (where bit 0 is
the least significant address bit).
Kessler shows that if all references to
memory addresses with some specific
constant value (e.g., 0000, 0010, etc.) in
address bits 11 to 8 are retained, then
approximately 1/16th of the total trace
will be sampled, assuming that the
probability of accessing different ad-
dresses is uniformly distributed.
Kessler proved that trace samples ob-
tained in this way can be used to simu-
late any cache whose address index bits
include the constant bits. In other
words, any cache whose line size is 256
bytes or less, and whose size divided by
its associativity is greater than 2 kilo-
bytes can use the sampled trace.

Puzak [1985] showed that set samples
representing 10 to 20% of the full trace
produce simulation results with less
than 2% error with 90% confidence. He
also showed that error decreases with
increasing cache associativity. Kessler
[1991] compared the effectiveness of set
sampling with time sampling in his sim-
ulations of multimegabyte secondary

caches. He showed that set sampling is
generally able to satisfy a goal of 10%
sampling with less than 10% error for
large caches (greater than one mega-
byte), but time sampling breaks down in
this range, mainly due to error from
cold-start bias.

An important disadvantage of set
sampling is that it cannot be used for
simulations of memory systems that
must model time-dependent behavior or
that must take into account interactions
between sets. For example, write buff-
ers, which handle write access to all
cache sets, cannot be simulated accu-
rately if only a subset of cache sets is
represented by the trace. Similarly,
many cache prefetch algorithms depend
on accesses to other cache sets. Sequen-
tial prefetch, for example, fetches the
cache line following the current line.
Because a set sample may not include
one of two adjacent cache lines, it is
impossible to simulate the initiation of
a sequential prefetch, or to determine if
the prefetch results in any benefit.

5.5 Summary of Trace Reduction

The most appropriate trace reduction
method often depends on the questions
to be answered by the simulation study,
and because many of the methods re-
strict the way that a reduced trace may
be used, no single method is always
best. A designer must first decide on the
memory design space to be explored and
then select a method depending on the
simulation speed and accuracy required.
If fast and exact simulation results are
required, the best trace-reduction meth-
ods are limited to size-reduction factors
of about 10. If speed is not a concern,
but exact results are necessary, then
methods based on standard data com-
pression or significant-events tracing
provide good solutions with size-reduc-
tion factors as high as 100, but with
trace-reconstruction times that can slow
simulations by as much as 50 to 200. If
simulation errors of 10% or less are
considered acceptable, then filtering
and sampling methods provide a good
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solution, with space and time reduction
factors of as high as 10 to 50.

As a final note, some of these trace
reduction methods can be combined to
produce multiplicative improvements in
compression factors. A cache-filtered
trace, for example, could also be time or
set sampled. Similarly, standard data-
compression algorithms can be applied
to most traces reduced by the other
methods, although the resulting com-
pression factors are likely to be less
than they would be on a full trace where
the initial entropy is lower.

6. TRACE PROCESSING

The ultimate objective of trace-driven
simulation is, of course, to estimate the
performance of a range of memory con-
figurations by simulating their behavior
in response to the memory references
contained in an input trace. This final
stage of trace-driven simulation is often
the most time-consuming component be-
cause a designer is typically interested
in hundreds or thousands of different
memory configurations in a given de-
sign space. As an example, the space of
simple caches defined by sizes ranging
from 4 to 64 Kbytes (in powers of two),
line sizes ranging from 1 to 16 words (in
powers of two), and associativities rang-
ing from 1-way to 4-way, contains 100
possible design points. Adding the
choice of different replacement policies
(LRU, FIFO, Random), different set-in-
dexing methods (virtually or physically
indexed), and different write policies
(write-back, write-through, write-allo-
cate) creates thousands of additional
possibilities. These design options are
for a single cache, but actual memory
systems are typically composed of mul-
tiple caches that cooperate and interact
in a multilevel hierarchy. Because of
these interactions and because different
memory components often compete for
scarce resources such as chip-die area,
the different components cannot be con-
sidered in isolation. This leads to a fur-
ther combinatorial expansion of the de-
sign space. Researchers have explored

two basic approaches to dealing with
this problem: parallel distributed simu-
lations, and multiconfiguration simula-
tion algorithms.

The first approach exploits the trivi-
ally parallelizable nature of trace-
driven simulations and the abundance
of unused computing cycles on networks
of workstations; each memory configu-
ration of interest can be simulated com-
pletely independently from other config-
urations, so it is a relatively simple
matter to distribute multiple simulation
jobs across the underutilized worksta-
tions on a network. In practice, there
are some complications with this ap-
proach. If, for example, the “owner” of a
workstation wants to reclaim the re-
sources of the computer sitting on his or
her desk, it is useful to have a method
for suspending or moving a compute-
intensive simulation task that has been
started on the machine. Another prob-
lem is that networks of workstations
are notoriously unreliable, so keeping
track of which simulation configura-
tions have successfully run to comple-
tion can be an unwieldy task. Several
software packages for workstation-clus-
ter management, which offer features
such as process migration, load balanc-
ing, and checkpointing of distributed
batch simulation jobs, help to solve
these problems. These systems are well-
documented elsewhere (see Baker
[1995] for a survey), so we discuss them
no further here.

Algorithms that enable the simula-
tion of multiple memory configurations
in a single pass of an address trace offer
another solution to the compute-inten-
sive task of exploring a large design
space. We use several criteria to judge
multiconfiguration simulation algo-
rithms in this survey (see Table VI).
First, it is desirable that the algorithm
be able to vary several simulation pa-
rameters (cache size, line size, associa-
tivity, etc.) at a time and, second, that it
be able to produce any of several differ-
ent metrics for performance, such as
miss counts, miss ratios, misses per in-
struction (MPI), write backs, and cycles
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per instruction (CPI). The overhead of
performing a multiconfiguration simu-
lation relative to a single-configuration
simulation is also of interest because
this value can be used to compute the
effective simulation speedup relative to
the time that would normally be re-
quired by several single-configuration
simulations.

6.1 Stack Processing

Mattson et al. [1970] were the first to
develop trace-driven memory simula-
tion algorithms that are able to consider
multiple configurations in a single pass
of an address trace. In their original
paper they introduced a method, called
stack processing, which determines the
number of memory references that hit
in any size of fully associative memory
that uses a stack algorithm for replace-
ment. Their technique relies on the
property of inclusion, which is exhibited
by certain classes of caches with certain
replacement policies. Mattson et al.
show, for example, that an n-entry, fully
associative cache that implements a
least recently used (LRU) replacement
policy includes all the contents of a sim-
ilar cache with only (n 2 1) entries.

When inclusion holds, a range of dif-
ferent sized, fully associative caches can
be represented as a stack as shown in
Figure 7. The figure shows that a one-
entry cache holds the memory line
starting at 0x700A, a two-entry cache
holds the lines starting at 0x700A and
0x5000, and so on. Trace addresses are
processed, one at a time, by searching
the stack. Either the address is found
(i.e., hits) in the stack at some stack

depth (Case I), or it is not found (Case
II). In the first case, the entry is pulled
from the middle of the stack and pushed
onto the top to become the most recently
used entry; other entries are shifted
down until the vacant slot in the middle
of the stack is filled. In the second case,
the missing address is pushed onto the
top of the stack and all other entries are
shifted down. The figure shows that in
Case I, the address is found at stack
depth 3, so the hits[3] counter is incre-
mented, and the entry at this depth is
pulled to the top of the stack. In Case II,
the address is not in the stack, so it is
pushed onto the top, and no counter is
incremented.

To record the performance of different
cache sizes, the algorithm also main-
tains an array that counts the number
of hits at each stack depth. As a conse-
quence of the inclusion property, the
number of hits in a fully associative
cache of size n (hitsn) can be computed
from this array by adding all the hit
counts up to a stack depth of (n 2 1) as
follows:

hitsn 5 O
i50

n21

hits@i#. (9)

Further metrics, such the number of
misses, the miss ratio, or the MPI in a
cache of size n can then be computed as
follows:

missesn 5 totalReferences 2 hitsn (10)

missRation 5 missesn/totalReferences
(11)

Table VI. Multiconfiguration Memory Simulators
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MPIn 5 missesn/totalInstructions.
(12)

Mattson et al. [1970] give other exam-
ples of stack replacement algorithms
(such as OPT), and also note that some
replacement policies, such as FIFO, are
not stack algorithms. In their original
paper, and in a collection of other fol-
low-up reports (see Sugumar [1993] or
Thompson and Smith [1989] for a more
complete description), Mattson et al. de-
scribed extensions to the basic stack
algorithm to handle different numbers
of cache sets, lines sizes, and associativ-
ities. In their early work, Mattson et al.
did not report on the efficiency of actual
implementations of their multiconfigu-
ration simulation algorithms. Many re-
searchers have advanced multiconfigu-
ration simulation by proposing various
enhancements and by reporting simula-
tion times for actual implementations of
these improvements. We focus on a se-
lection of recent papers that extend the
range of multiconfiguration parameters,
and that characterize the current state-
of-the-art in this form of simulation (see
Table VI).

6.2 Forrest and All-Associativity
Simulation

Hill [1987] noted that the original stack
algorithm of Mattson et al. requires the
number of cache sets and the line size to
be fixed. This means that a single simu-

lation run can only explore larger
caches through higher degrees of asso-
ciativity. Hill argues that designers are
often more interested in fixing the cache
associativity and varying the number of
sets; Hill’s forest-simulation algorithm
supports this form of multiconfiguration
simulation. Another algorithm studied
by Hill is all-associativity simulation,
which enables both the number of sets
and the associativity to be varied with
just slightly more overhead than forest
simulation. Thompson and Smith [1989]
developed extensions that count the
number of writes to main memory for
different-sized caches that implement a
write-back write policy. They also stud-
ied multiconfiguration algorithms for
sector or subblock caches. Wang and
Baer combined the work of Mattson et
al. [1970], Hill and Smith [1989] and
Thompson and Smith [1989] to compute
both miss ratios and write-backs in a
range of caches where both the number
of sets and the associativity are varied.
In his dissertation, Sugumar [1993] de-
veloped algorithms for varying line size
with direct-mapped caches of a fixed
size, and also for computing write-
through stalls and write traffic in a
cache with a coalescing write buffer.

6.3 Summary of Trace Processing

There are several points to be made
about multiconfiguration algorithms in

Figure 7. Data structures for stack simulation.
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general. First, for all of the examples
considered, the overhead of simulating
multiple configurations in one trace
pass is reported to be less than 100%,
which means that one multiconfigura-
tion simulation of two or more configu-
rations would perform as well as or
better than collections of two or more
single-configuration simulations. These
results should, however, be interpreted
with care because these overheads are
reported relative to the time to read and
to process traces. When the time to read
an input trace is high, as is often the
case when the trace comes from a file,
the overhead of multiconfiguration is
very low. If, however, the trace input
times are relatively low, then the multi-
configuration overheads will be much
higher. This is the case with Sugumar’s
Cheetah simulator which appears to
have very high overheads relative to
Hill’s Tycho simulator [Hill 1987; Sugu-
mar 1993] (see Table VI). Cheetah’s
overall simulation times are, however,
approximately 8 times faster than Ty-
cho because its input processing is more
optimized [Sugumar 1993].

A second point is that even though
multiple configurations can be simu-
lated with one trace pass, it is often still
necessary to re-apply multiconfigura-
tion algorithms several times to cover
an entire design space. Hill [1987] gives
an example design space of 24 caches,
with a range of sizes, line sizes, and
associativities where the minimal num-
ber of trace passes required by stack
simulation is 15. For the same example,
forest simulation still requires 3 sepa-
rate passes but can cover only half of
the space. Hill argues that all-associa-
tivity simulation is the best method in
this case because although it also re-
quires 3 separate passes, it can cover
the entire design space.

Finally, despite many advances in
multiconfiguration simulation, there
are many types of memory systems and
performance metrics that cannot be
evaluated in a single trace pass. Most of
these algorithms restrict replacement
policies to LRU, which is rarely imple-

mented in actual hardware. Similarly,
performance metrics that require very
careful accounting of clock cycles, such
as CPI, generally cannot be computed
for a range of configurations in a single
simulation pass (e.g., simulating con-
tention for a second-level cache between
split primary I- and D-caches requires a
careful accounting of exactly when
cache misses occur in each cache).

7. COMPLETE TRACE-DRIVEN
SIMULATION SYSTEMS

Until now, we have examined the three
components of trace-driven simulation
in isolation. In this section we examine
some of the ways that these components
can be combined to form a complete
simulation system. Figure 1 suggests a
natural composition of the three compo-
nents in which they communicate
through a simple linear interface of
streaming addresses that may include
some form of buffering between the
components. Because of the high data
rates required, the selection of mecha-
nisms used to transfer and buffer trace
data is crucial to the overall speed of a
trace-driven system. A bottleneck any-
where along the path from trace collec-
tion to trace processing can increase
overall slowdowns. In this section we
examine the pros and cons of different
interfacing methods and summarize
some overall simulation slowdowns as
reported in the literature, as well as
those measured by our own experi-
ments.

7.1 Trace Interfaces

Because address traces conform to a
simple linear data stream model, there
are several options available for com-
municating and buffering them (see Fig-
ure 8). Some simulators rely on mecha-
nisms provided by the host operating
system (files or pipes), and others imple-
ment communication on their own using
standard procedure calls or regions of
memory shared between the trace col-
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lector and the trace processor. We ex-
amine each of the possibilities in turn.

Because they are backed by secondary
storage devices, files provide the advan-
tages of deep and nonvolatile buffering.
These capabilities enable the postpone-
ment of trace processing as well as the
ability to repeatedly use the same
traces to obtain reproducible simulation
results. Unfortunately, files suffer some
important disadvantages, the first of
which is speed. Assuming disk band-
width of 1 MB/sec and an address-gen-
eration rate of 100 MB/sec by the host, a
file stored on disk can slow both trace
collection and trace processing by a fac-
tor of 100 or more. A second disadvan-
tage of files is that they are simply
never large enough. Assuming again a
host address-generation rate of 100 MB/
sec, a one gigabyte hard disk would be
filled to capacity in about 10 seconds of
real-time execution. This underscores
the importance of the trace-reduction
methods, described in Section 5, which
can improve effective file capacity and
bandwidth by one to two orders of mag-
nitude.

Pipes, which establish a one-way
channel for the flow of sequential data
from one process to another, are an-
other communication abstraction that
can sometimes overcome the limitations
of files. Pipes use only a moderate
amount of memory (on the order of kilo-
bytes) to buffer the data flowing be-
tween the two processes, which implies
that both a trace collector and trace

processor must be running at the same
time to prevent buffer overflow. With
this approach, which is often called on-
the-fly simulation, traces are discarded
just after they are processed. Because
traces must be re-collected for each new
simulation run, this technique is most
effective when the trace collector is able
to produce traces faster than can be
read from a file. In the case of instruc-
tion-set emulators and code annotators,
where slowdowns range from 10 to 70,
this requirement is usually met. Com-
munication via pipes is substantially
faster than via files, with overheads
typically adding 5 to 10 to overall simu-
lation slowdown. Note that when pipes
are used, trace-reduction methods are
less attractive because they must be
reapplied during each simulation run
and thus provide little or no advantage
over simply processing the full address
trace.

Both files and pipes are interprocess
communication mechanisms provided
by an OS file system. As such, their use
incurs a certain amount of operating
system overhead for copying or mapping
data from one address space to another,
and from context switching between
processes. These overheads can be
avoided if a trace collector and trace
processor run in the same process and
arrange communication and buffering
without the assistance of the OS. Sev-
eral of the instruction-set emulation
and code-annotation tools support trace
collection and trace processing in the

Figure 8. Trace interfaces.
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same process address space (see Table
III). In these systems, two different ap-
proaches to communicating and buffer-
ing trace data are commonly used. The
first method is to make a procedure call
to the trace processor after each mem-
ory reference. In this case, trace collec-
tion and processing are very tightly cou-
pled and thus no trace buffering is
required. A disadvantage is that proce-
dure-call overhead, such as register sav-
ing and restoring, must be paid after
each memory reference. With the second
method, a region of memory in a pro-
cess’s address space is reserved to hold
trace data. Execution begins in a trace-
collecting mode, which continues until
the trace buffer fills, and then switches
to a trace-processing mode which runs
until the trace buffer is again empty. By
switching back and forth between these
two modes infrequently, this method
helps to amortize the cost of procedure
calls over many addresses. By bringing
communication slowdowns under a fac-
tor of 5, both of these methods improve
over files and pipes, but it should be
noted that placing a simulator in the
same process as the monitored workload
can complicate the monitoring multipro-
cess workloads.

7.2 Complete Trace-Driven Simulation
Slowdowns

Because of the variety of trace-driven
simulation techniques and the ways to
interconnect them, overall trace-driven
simulation slowdowns range widely.
Unfortunately, very few papers report
overall slowdowns because most tend to

focus on just one component or aspect of
trace-driven simulation, such as trace
collection. Researchers that do assemble
complete trace-driven simulation envi-
ronments tend to report the results, not
the speed of their simulations. There
are, however, a few exceptions, which
we summarize in this section and aug-
ment with our own measurements.

Table VII lists several complete trace-
driven simulators composed of many
different types of trace-collection and
trace-processing tools. As such, these
systems are fairly representative of the
sort of simulators that can be con-
structed with state-of-the-art methods.
We must be careful when comparing the
different slowdowns reported in Table
VII because each corresponds to the
simulation of different memory configu-
rations7 at different levels of detail,
running different workloads, and using
different instruction-set architectures.
The table does, however, enable us to
draw some general conclusions about
the achievable speed of standard trace-
driven simulation systems.

As Table VII shows, complete simula-
tors rarely exhibit slowdowns of less
than about 100, with a few rare excep-
tions that are able to achieve slowdowns
of around 50. The fastest integrated
simulator was gsim, with reported slow-
downs in the range of 45 to 75 for a
relatively simple workload (an opti-
mized version of the Drystone bench-

7 For tools that enable multiprocessor memory
simulations we report the slowdowns for one pro-
cessor only to enable more meaningful compari-
sons with the uniprocessor-only simulators.

Table VII. Slowdowns for Some Complete Trace-Driven Memory Simulation Systems
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mark). The fastest composed simulator,
constructed by driving Pixie traces
through a pipe to the Cache2000 [MIPS
1988] trace processor, exhibits slow-
downs in the range of about 60 to 80.
The workload in this case is more sub-
stantial: an MPEG video decoder. By
comparing the slowdowns for Cheetah
driven by traces coming from a file
(Monster traces) versus coming from a
pipe (Pixie traces), we can see the bene-
fits of on-the-fly trace generation and
processing; the Pixie 1 Cheetah combi-
nation is more than two times faster
than the Monster 1 Cheetah system,
despite the fact that a greater number
of configurations (44 versus 8, respec-
tively) are being simulated. Note that
the overheads of the two multiconfigu-
ration simulators (Tycho and Cheetah)
cause their overall slowdowns, relative
to single-configuration simulation with
Cache2000, to be much higher than the
values reported in Section 6. For Chee-
tah, the overheads are at least 300%,
and for Tycho they are an order of mag-
nitude higher. Given the degree of their
simulation detail, the integrated simu-
lators Talisman and gsim, which are
based on emulation techniques similar
to those described in Section 4.3, per-
form quite well, providing further evi-
dence that instruction-set emulation is
a very viable technique for memory-sys-
tem evaluation.

To better understand the sources of
trace-driven slowdown, we measured
the speed of the Cache2000 1 Pixie
combination over a range of instruction-
and data-cache sizes. The results,
shown in Figure 9, illustrate that most
of the slowdowns are due to trace pro-
cessing. This observation is supported
by reported experiences with other tools
as well. Goldschmidt and Hennessy
[1992] report that trace processing in
TangoLite slows a system by an addi-
tional factor 17 relative to a workload
that is annotated to produce address
traces only (compare the TangoLite en-
tries in Table III with those of Table
VII). Borg et al. [1989] report a similar
observation, noting that their Epoxie-
driven Panama simulations spend far
more time processing address refer-
ences than collecting them.

7.3 Summary of Complete Trace-Driven
Simulation Systems

As Table VII and Figure 9 show, the
generation, transfer, and processing of
trace data for memory system simula-
tion are extremely challenging—few
traditional trace-driven simulators
achieve slowdowns much lower than
about 50, with the main bottleneck be-
ing the time required to process address
traces. These results suggest that the
biggest gains in overall trace-driven

Figure 9. Components of trace-driven simulation slowdowns.
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simulation speed are likely to come ei-
ther from methods that speed up trace
processing, or from techniques that can
avoid invoking the trace processor alto-
gether. The latter strategy is the subject
of our next section.

8. BEYOND TRACE-DRIVEN SIMULATION

Strict adherence to the trace-driven
simulation paradigm is likely to limit
further substantial improvements in
memory simulation speeds. The pri-
mary bottleneck in trace-driven simula-
tion comes from collecting and process-
ing each memory reference made by a
workload, whether or not it changes the
state of a simulated memory structure.
Several researchers, noting this bottle-
neck to trace-driven simulation, have
developed innovative methods for elimi-
nating or reducing the cost of processing
memory references (see Table VIII). Al-
though the mechanisms that they use
differ, each of these tools works by find-
ing special cases where a memory refer-
ence has no effect on simulated memory
state. A common example is a cache hit
which, unlike a cache miss, typically
does not require any updates to a
cache’s contents.

8.1 Software-Based Miss Detection

MemSpy [Martonosi et al. 1992] is a
memory simulation and analysis tool
built on top of the TangoLite trace col-
lector discussed in Section 4.4. Original
implementations of MemSpy, which an-

notated assembly code to call a simula-
tion routine after each heap or static-
data reference, exhibited typical trace-
driven slowdowns in the range of 20 to
60 when performing simulations of a
128-KB, direct-mapped data cache.
Each call to the MemSpy simulator in-
curred overheads for saving and restor-
ing registers, simulating the cache, and
updating statistics. Martonosi et al. ob-
served that in the case of a cache hit,
memory state need not be updated, and
the call to the cache simulator can be
avoided altogether. To exploit this fact,
Martonosi et al. modified the annota-
tions around each memory reference to
test for a cache hit before invoking the
full cache simulator. When a hit occurs,
the MemSpy simulator code is bypassed
and execution continues to the next in-
struction. This hit-bypassing code re-
quires about 25 instructions, compared
with the 320 to 510 cycles for a full call
into the MemSpy simulator on a cache
miss. Because cache hits are far more
common than misses, the long path is
infrequently invoked, and the MemSpy
slowdowns were effectively reduced to
the range of 10 to 20.

Fast-Cache [Lebeck and Wood 1995]
is another example of a simulator that
optimizes for the common case of cache
hits. Fast-Cache is based on an abstrac-
tion called active memory, which is a
block of memory with a pointer to an
associated handler routine that is called
whenever memory locations in the block
are referenced. During a cache simula-

Table VIII. Beyond Traces: Some Recent Fast Memory Simulators
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tion, these handlers are changed dy-
namically to detect when cache misses
occur. At the beginning of a simulation,
all Fast-Cache memory blocks point to a
handler for cache misses. As the blocks
of memory are accessed for the first
time, the miss handler is invoked, it
counts the miss, and then sets the han-
dler for the missing memory block to
point to a NULL routine. Future ac-
cesses to these memory blocks (which
are now resident in the simulated
cache) are processed much more quickly
because the NULL routine simply re-
turns to the workload without invoking
the complete cache simulator. As the
simulated cache begins to fill, the miss
handler will eventually begin loading
newly referenced memory blocks into
the cache at locations that are already
occupied by other memory blocks. These
cache conflict misses are modeled by
resetting the handler for the displaced
memory blocks to point back to the miss
handler again so that future references
to the displaced block will register a
miss. Fast-Cache implements active
memory blocks by using the EEL exe-
cutable editor, described in Section 4.4,
to annotate each workload instruction
that makes a memory reference with 9
additional instructions that look up the
state of an active memory block and
invoke the appropriate handler. In the
case of a NULL handler, only 5 addi-
tional instructions are required per
memory reference. Depending on the
workload, Fast-Cache achieves overall
slowdowns in the range of about 2 to 7
for the simulation of direct-mapped
data caches ranging in size from 16 KB
to 1 MB. Like MemSpy, Fast-Cache sim-
ulates only data caches for single pro-
cess workloads (i.e., it does not monitor
instruction or operating system refer-
ences).

Embra [Witchel and Rosenblum 1996]
uses dynamic compilation techniques
similar to those of Shade (see Section
4.3) to generate code sequences that test
for simulated TLB and cache hits before
invoking slower handlers for misses in
these structures. Embra’s overall slow-

downs (7 to 21) compare very favorably
with those of MemSpy and Fast-Cache,
given that it simulates a more complete
memory system consisting of TLB, I-
cache, and D-cache. Embra runs as part
of the SimOS [Rosenblum et al. 1995]
simulation environment, which enables
it to fully emulate multiprocess work-
loads as well as operating-system ker-
nel code.

8.2 Hardware-Based Miss Detection

Simulators such as MemSpy, Fast-
Cache, and Embra reduce the cost of
processing cache hits, but because they
are based on code annotation or emula-
tion, they always add a minimal base
overhead to the execution of every mem-
ory operation. One way around this
problem is to use the host hardware to
assist in the detection of simulated
misses. This can sometimes be accom-
plished by using certain features of the
host hardware, such a memory manage-
ment unit or error-correcting memory,
to constrain access to the host’s memory
and cause kernel traps to occur when-
ever a workload makes a memory access
that would cause a simulated cache or
TLB miss. If implemented properly, this
method requires no instructions to be
added to a workload, enabling simu-
lated hits to proceed at the full speed of
the underlying host hardware. Trap-
driven simulations can thus, in princi-
ple, achieve near-zero slowdowns when
the simulated miss ratio is low.

Tapeworm is an early example of a
trap-driven TLB simulator that relies
on the fact that all TLB misses in its
host machine (a MIPS-based DECsta-
tion) are handled by software in the
operating system kernel [Nagle et al.
1993]. Tapeworm works by becoming
part of the operating system of the host
machine that it runs on—the usual soft-
ware handlers for TLB misses are mod-
ified to pass the relevant information
about all user and kernel TLB misses
directly to the Tapeworm simulator af-
ter each miss. Tapeworm then uses this
information to maintain its own data
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structures for simulating other possible
TLB configurations, using algorithms
similar to the software-based tools de-
scribed in the previous section. There
are two principal advantages to compil-
ing the Tapeworm simulator into the
host operating system to intercept TLB
miss traps. First, by being in the kernel,
Tapeworm can capture TLB misses from
all user processes, as well as the OS
kernel itself. Second, because Tape-
worm does not add any instructions to
the workload that it monitors, nontrap-
ping memory references proceed at the
full speed of the underlying host hard-
ware, which results in zero-slowdown
processing of simulated TLB hits. On
the other hand, a simulated TLB miss
incurs the full overhead of a kernel trap
and the simulator code, which varies
from 100 to 650 host cycles. Fortu-
nately, TLB hits are far more frequent
than TLB misses, outnumbering them
by more than 300 to 1 in the worst case
[Nagle et al. 1993]. The result is that
Tapeworm TLB simulation slowdowns
range from about 0.5 to 4.5.

Trap-driven TLB simulation has re-
cently been implemented on other archi-
tectures with similar success. Lee
[1997] has implemented a trap-driven
TLB simulator on a 486-based PC run-
ning Mach 3.0. Because the i486 proces-
sor has hardware-managed TLBs, Lee’s
simulator uses a different mechanism
for causing TLB miss traps, one that is
based on page-valid bits. By manipulat-
ing the valid bit in a page-table entry,
Lee’s simulator causes TLB misses to
result in kernel traps in the same way
that they do in a machine with soft-
ware-managed TLBs. Talluri and Hill
[1994] use similar techniques in a trap-
driven TLB simulator that runs on
SPARC-based workstations under the
Foxtrot operating system to study archi-
tectural support for superpages. Talluri
and Lee both report that the overall
slowdowns for their simulators are com-
parable to those of Tapeworm.

A limitation of the trap-driven simu-
lators previously described is that they
are not easily extended to cache simula-

tion. This is because the mechanisms
that they use to cause kernel traps op-
erate at the granularity of a memory
page. The first trap-driven simulator
that overcame this limitation is the
Wisconsin Wind Tunnel (WWT), which
caused kernel traps by modifying the
error-correcting code (ECC) check bits
in a SPARC-based CM-5 [Reinhardt et
al. 1993]. Because each memory location
has ECC bits, this method enables traps
to be set and cleared with a much finer
granularity, enabling cache simulation.
As with the trap-driven TLB simulators
previously noted, a simulated cache hit
in WWT runs at the full speed of the
host machine, and for caches with low
miss ratios, overall slowdowns are mea-
sured to be as low as 1.4. However, in a
comparison with Fast-Cache, Lebeck
and Wood [1994] report that WWT ex-
hibits slowdowns of greater than 30 or
40 for caches smaller than 32KB. These
slowdowns are much higher than those
reported for TLB simulation, both be-
cause cache misses occur much more
frequently than TLB misses, and be-
cause a WWT trap requires about 2,500
cycles to service.

Tapeworm II, a second-generation
Tapeworm simulator which also uses
ECC-bit modification to simulated
caches, improves on the speed of WWT
by showing that trap-handling times
can be reduced by nearly an order of
magnitude to about 300 cycles, bringing
overall simulation slowdowns for in-
struction caches into the range of 0 to
10 [Uhlig et al. 1994]. Tapeworm II, like
the original Tapeworm, also demon-
strates that trap-driven cache simula-
tion is capable of complete monitoring
multiprocess and operating system
workloads. Experiments performed with
Tapeworm II show that trap-driven sim-
ulation slowdowns are highly dependent
on the memory structure being simu-
lated, with the relationship between
slowdown and configuration parameters
often being quite different from trace-
driven simulation. Trace-driven simula-
tions of associative caches, for example,
are typically slower than direct-mapped
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cache simulations because of the extra
work required to simulate an associa-
tive search. With trap-driven simula-
tions, however, the opposite is true:
Tapeworm’s associative-cache simula-
tions are faster because there is a lower
ratio of misses (and thus traps) to total
memory references relative to simula-
tions of direct-mapped caches of the
same size. Other experiments with
Tapeworm II have examined sources of
measurement and simulation error of
trap-driven simulation compared with
those of trace-driven simulation. Many
sources of error are the same (e.g., time
dilation), but some were found to be
unique to trap-driven simulation. In
particular, because Tapeworm II be-
comes part of its running host system, it
is more sensitive to dynamic system ef-
fects, such as virtual-to-physical page
allocation and memory fragmentation in
a long-running system. Although Tape-
worm’s sensitivity to these effects may
necessitate multiple experimental tri-
als, this should not be viewed as a lia-
bility; a trap-driven simulator that be-
comes part of a running system can give
insight into real, naturally occurring
system effects that are beyond the scope
of static traces.

8.3 Summary of New Memory Simulation
Methods

With slowdowns commonly around 10,
and in some cases approaching 0, the
new simulators discussed in this section
show that memory simulation speeds
can be improved dramatically by reject-
ing the traditional trace-driven simula-
tion paradigm of collecting and process-
ing each and every memory reference
made by a workload. There are substan-
tial performance gains to be had by
optimizing for the common case of cache
or TLB hits.

The three software-based systems
(MemSpy, Fast-Cache, and Embra/
SimOS) share a number of important
advantages. They are flexible, low in
cost, and relatively portable because
they do not rely on special hardware

support. Because they are based on the
same basic techniques as trace collec-
tors that use code annotation or emula-
tion, these three tools suffer from some
of the same disadvantages, such as
memory overheads as high as 5 to 10
due to added instructions and/or emula-
tion state. Code expansion may not be a
concern for applications with small text
segments, but annotating larger multi-
process workloads along with the kernel
can cause substantial expansion.

The hardware-based trap-driven sim-
ulators, such as Tapeworm II and WWT,
avoid the problems of code expansion,
and they are also able to achieve near-
zero slowdowns when miss ratios are
small. The main weakness of trap-
driven simulation is low flexibility and
portability—all of the trap-driven simu-
lators that we examined were limited in
the simulations that they could per-
form, and all rely on ad hoc methods to
cause OS kernel traps.

Although hit overheads are zero with
the hardware-based methods, their miss
costs are on average much higher than
those for the software-based techniques.
This suggests that the fastest method
depends highly on the ratio of hits to
misses for a given workload and mem-
ory configuration. Lebeck and Wood
[1995] studied this issue and concluded
that a hardware-based approach is bet-
ter for miss ratios up to about 5%, at
which point the high cost of servicing
miss traps begins to make a software-
based approach more attractive. Given
this, the software-based methods are
probably the better choice for simulat-
ing small on-chip caches with their
higher miss ratios, but the trap-driven
methods are more effective for simulat-
ing large off-chip caches, which have
traditionally been difficult to manage
with standard trace-driven simulation
because of the time it takes to overcome
cold-start bias [Kessler 1991].

Both the hardware- and software-
based techniques have been shown ca-
pable of monitoring complete OS and
multitask workloads (e.g., SimOS,
Tapeworm II). The Tapeworm II ap-
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proach of compiling the trap handlers
directly into the kernel of the host sys-
tem enables it to benefit from much of
the existing host infrastructure. SimOS,
by contrast, must develop detailed sim-
ulation models of several system compo-
nents (such as network controllers, disk
controllers, etc.) to achieve the same
effect. Although more work is required
to establish these models, SimOS, in the
end, is able to account for effects such
as time dilation, a form of distortion for
which Tapeworm II has difficulty com-
pensating.

When hit-bypassing is implemented
in software, it limits the effectiveness of
techniques such as time sampling [Laha
et al. 1988] and set sampling [Puzak
1985]. Martonosi et al. [1993] investi-
gated time sampling by adding an addi-
tional check to MemSpy’s annotations
that enabled and disabled monitoring at
regular intervals. When enabled, anno-
tation overheads are similar to those
cited previously (25 instructions per
hit), but when disabled, an annotated
reference executes only 6 extra instruc-
tions. When trapping is enabled for 10%
of the entire execution time, MemSpy
slowdowns dropped to about 4 to 10, a
factor of 2 improvement over simula-
tions without sampling. Ideally 10%
sampling would result in a factor of 10
speedup, but in this case, code annota-
tion adds an unavoidable base over-
head; even when trapping is turned off,
each annotated memory reference still
results in the execution of 6 extra in-
structions. In contrast, experiments
with Tapeworm II show that the trap-
driven approach lends itself well to
sampling [Uhlig et al. 1994]—when
Tapeworm samples 1/Nth of all refer-
ences, slowdowns are reduced in direct
proportion, by a factor of N. This is true
because unsampled references, like sim-
ulated cache hits, can run at the full
speed of the host hardware.

The tradeoffs between these new
memory system simulators are complex,
and neither the software-based nor
hardware-based approaches are clear
winners in every situation. The reliance

on ad hoc trapping mechanisms is a
considerable disadvantage for the trap-
driven simulators, so the software-
based tools are likely to be more popular
in the immediate future. If, however,
future machines begin to provide better
support for controlling memory access
in a fine-grained manner, trap-driven
simulation could become more attrac-
tive. Such support is not necessarily
expensive, and could be useful for other
applications as well, such as distributed
shared memory [Reinhardt et al. 1996].

9. SUMMARY

Trace-driven simulation has played an
important role in the design of memory
systems in the past, and because of the
increasing processor memory speed gap
its usefulness is likely to continue grow-
ing in the future. This survey has de-
fined several criteria to use when judg-
ing the features of a trace-driven
simulation system, and has come to sev-
eral conclusions contrary to the conven-
tional wisdom. In particular, instruc-
tion-set emulation is faster than
commonly believed, probe-based trace
collection is slower than commonly be-
lieved, and multiconfiguration simula-
tions include more overhead than typi-
cally reported. Most important, no
single method is best when all points of
comparison, including speed, accuracy,
flexibility, expense, portability, and
ease of use, are taken into consider-
ation.

Perhaps the most important factor to
keep in mind when selecting the compo-
nents of a complete trace-driven mem-
ory simulator is balance. Research in
trace-driven simulation frequently
places too much emphasis on one aspect
of the process (e.g., speed) at the ex-
pense of others (e.g., completeness or
portability). In the quest for raw speed,
a simulator writer might, for example,
be tempted to select a static code anno-
tator over an instruction-set emulator
because the former is typically twice as
fast as the latter for collecting address
traces. When trace-processing times are
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taken into account, however, this differ-
ence may make a negligible contribu-
tion to overall slowdowns and may not
be worth the flexibility and ease of use
that annotators sacrifice to obtain their
speed advantage over emulators. Simi-
larly, the results obtained from the fast-
est known cache simulator may not be
of much value if they can only be used
to study single-process workloads. A
slower, but more complete system, capa-
ble of capturing multiprocess and oper-
ating system activity, may often be the
better choice.

Looking forward, we can expect to see
continued changes in the way that
memory system simulation is per-
formed. The biggest change is likely to
come in the contents of the traces them-
selves. As we saw in Section 8, there is
much to be gained by moving beyond a
simple sequential trace interface in
which each and every memory reference
is passed from trace collector to trace
processor. Richer trace interfaces will
result not only in faster simulation
times, but may become a necessity to
enable accurate simulations of tomor-
row’s complex microprocessors, which
will be capable of making out of order,
nonblocking accesses to the memory
system.
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