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Abstract

Previous research has shown that the SPEC benchmarks
achieve low miss ratios in relatively small instruction caches. This
paper presents evidence that current software-development prac-
tices produce applications that exhibit substantially higher
instruction-cache miss ratios than do the SPEC benchmarks. To
represent these trends, we have assembled a collection of applica-
tions, called the Instruction Benchmark Suite (IBS), that provides
a better test of instruction-cache performance. We discuss the
rationale behind the design of IBS and characterize its behavior
relative to the SPEC benchmark suite. Our analysis is based on
trace-driven and trap-driven simulations and takes into full
account both the application and operating-system components of
the workloads.

This paper then reexamines a collection of previously-pro-
posed hardware mechanisms for improving instruction-fetch per-
formance in the context of the IBS workloads. We study the impact
of cache organization, transfer bandwidth, prefetching, and pipe-
lined memory systems on machines that rely on the use of rela-
tively small primary caches to facilitate increased clock rates. We
find that, although of little use for SPEC, the right combination of
these techniques provides significant benefit for IBS. Even so,
under IBS, a stubborn lower bound on the instruction-fetch CPI
remains as an obstacle to improving overall processor perfor-
mance.
Key words: code bloat, address traces, caches, instruction fetch-
ing.

1 Introduction
It has long been recognized that the best selection of memory-

system parameters, such as cache size, associativity and line size,
is highly dependent on the workload that a machine is expected to
support [Smith85]. Because application and operating system
code continually evolves over time to incorporate new functions,
and because memory technologies are constantly changing in
capability and cost, it follows that memory-system parameters
must be periodically re-evaluated to achieve the best possible per-
formance. This paper studies trends in software development that
cause programs to grow in size and examines the impact of these
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trends on one important aspect of memory-system design: the
fetching of instructions.

As application and operating system software evolves to
include more features and to become more portable, maintainable
and reliable, it also tends to consume more memory resources.
The “bloating” of code affects a memory-system hierarchy at all
levels and in a variety of ways: the larger static sizes of program
executables occupy more disk space; the larger working sets of
bloated programs require more physical main memory; bloated
programs use virtual memory in a more sparse and fragmented
manner, making their page-table entries less likely to fit in TLBs;
finally, the increased dynamic size of bloated code can reduce its
locality, making caches less effective in holding code close to the
processor for rapid execution.

Improvements in memory technology can offset some of these
trends. For example, main-memory DRAMs have quadrupled in
size roughly every 2 to 3 years and their price has dropped
steadily from about $800 per megabyte in 1986 to a current price
of about $40 per megabyte [Touma92]. Magnetic disk drives have
exhibited similar improvements in capacity and reduction in cost
[Touma92]. However, technology trends have resulted in more
complex trade-offs in the case of TLBs and caches. Although con-
tinued advancements in integrated-circuit densities make it possi-
ble to allocate more die area to on-chip cache structures,
reductions in cycle times constrain the maximum size and asso-
ciativity of primary on-chip caches [Jouppi94]. This is true
because for a given integrated-circuit technology, increasing
cache size and associativity increases access times [Olukutun92,
Wada92, Wilton94]. As a result, the primary caches in processors
that have targeted fast cycle times (100+ MHz) in recent years
tend to have low associativity and are limited to 4KB to 16KB
[MReport93, MReport94]. The net effect of these trends is that
primary caches have not grown in size during the past 10 years
[Brunner91]. These hardware and software trends are particularly
demanding of instruction caches because code bloat can increase
the active instruction working-set sizes that CPU caches must
retain close to the processor.

When CPU performance is reported in terms of SPECmarks
[SPEC91], the effects of code bloat on system performance in an
actual work environment are not revealed for two reasons. First,
bloat in operating system code does not affect the SPEC suite
because less than 2% of the entire execution time of the SPEC
benchmarks is spent in system mode [Gee93]. Second, unlike
real-world applications, the SPEC benchmarks are not regularly
augmented with new features or restructured to enhance their
portability and maintainability. For example, a graphical user
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interface has not been added to programs in the SPEC suite as it
has to most commercial applications. In fact, the SPEC bench-
marks have evolved to be even less demanding of instruction
caches with their second release in 1992 (see Table 1). A study of
the effects of code bloat on instruction-cache performance must
extend beyond SPEC to include a new set of workloads that better
represents these effects.

This paper makes three main contributions. First, it describes
and analyzes several common software-development practices
that lead to growth in application and operating system codes.
Second, it re-evaluates the effectiveness of several previously-
proposed methods for improving instruction-fetching perfor-
mance in the context of bloated code and new technology con-
straints. Third, our benchmark suite and its corresponding address
traces, complete with operating system references, are available to
the research community so that our findings can be confirmed and
to enable further architectural studies.

Our study of software-development trends includes the design
of a new collection of workloads which we call theInstruction
Benchmark Suite (IBS). In an analysis that takes into account the
full activity of both the user-level and kernel-level components of
these workloads, we characterize and compare this workload suite
against programs in SPEC92. This analysis confirms that code-
bloat trends lead to increased I-cache capacity and associativity
requirements.

Then, starting with the assumption that future high-speed pro-
cessors will have to limit their primary I-caches to small, direct-
mapped memories [Jouppi94], we evaluate various methods for
reducing primary I-cache miss penalties. These methods include
adding and tuning asecond level of on-chip cache, and then
implementing a variety of optimizations to the interface between
the primary and secondary cache, such as increasing the transfer
bandwidth, prefetching instructions,bypassing the cache on a line
refill andpipelining portions of the memory system. Our analysis
shows that the IBS workloads are more sensitive to these optimi-
zations than the SPEC benchmarks are, and exhibit larger absolute
improvements in performance when these optimizations are
applied.

In the next section, we examine related work on benchmark
characterization and methods for improving instruction-fetching
performance. In Section 3, we briefly describe our methodology
and analysis tools. Section 4 studies software-development prac-
tices that cause programs to grow in size and relates these trends

Benchmark

Execution Time (%) Total
Memory

CPI

Components of Memory CPI

User OS I-cache (CPI instr ) D-cache (CPI data) TLB (CPI tlb ) CPU (CPIwrite)

SPECint89 97% 3% 0.285 0.067 0.100 0.044 0.074

SPECfp89 98% 2% 0.967 0.100 0.668 0.020 0.179

SPECint92 97% 3% 0.271 0.051 0.084 0.073 0.063

SPECfp92 98% 2% 0.749 0.053 0.436 0.134 0.126

Table 1:   Memory System Performance of the SPEC Benchmarks

This table shows the memory-system performance of the SPEC benchmarks as measured by a hardware logic analyzer connected to
the CPU pins of a DECstation 3100 running Ultrix. The DECstation 3100 uses a 16.6-MHz R2000 processor and implements split,
direct-mapped, 64-KB, off-chip I- and D-caches with 4-byte lines. The miss penalty for both the I- and D-caches is 6 cycles. The
R2000 TLB is fully-associative and holds 64 mappings of 4-KB pages.

Performance is reported in terms of cycles per instruction (CPI). Because this is a single-issue machine, the base CPI is 1.0, assum-
ing no pipeline interlocks and a perfect memory system. The actual CPI, as measured by the logic analyzer, is higher primarily
because of memory-system stalls which are summarized under Components of Memory CPI.

to our design of IBS, while Section 5 evaluates methods for
recovering some of the I-cache performance lost to IBS.

2 Related Work

In recent years, much of the architecture research community
has settled on using the SPEC benchmark suite as a measure of
uniprocessor system performance1 and considerable effort has
been expended by commercial computer manufacturers to tune
system performance on these workloads [Gee93]. Despite its pop-
ularity for evaluating a wide range of architectural structures,
SPEC warns against the use of the SPEC89 or SPEC92 bench-
marks for testing memory or I/O performance [SPEC93]. In par-
ticular, the SPEC benchmark suite is not a good test of
instruction-cache performance, a point made most persuasively by
Gee et al. who have shown through exhaustive simulation that
most of the SPEC benchmarks fit easily into relatively small I-
caches over a range of associativities and line sizes [Gee93].

One reason that the SPEC benchmarks exhibit such good I-
cache performance is due to their infrequent invocation of operat-
ing system services. Memory-system studies that use workloads
with a greater reliance on operating system services have found
that much larger caches and TLBs are often required to attain sat-
isfactory performance [Clark83, Emer84, Clark85a, Clark85b,
Smith85, Alexander85, Alexander86, Agarwal88, Borg90,
Mogul91, Torrellas92, Flanagan93, Chen93c, Chen94a, Huck93,
Cventanovic94, Maynard94, Nagle93, Nagle94].

Several hardware-based methods have been proposed to
reduce the penalty of misses in small, direct-mapped primary I-
caches. The most straightforward is to add a second level of
cache, either on or off chip, to reduce time-consuming references
to main memory [Short88, Baer87, Baer88, Przybylski89,
Przybylski90, Happel92, Kessler91, Olukotun91, Jouppi94,
Wang89]. Other methods focus on optimizing the interface from
the primary I-cache to the next level in the memory hierarchy,
whether it be a second-level cache, or main memory. These meth-
ods include the tuning of the cache line sizes [Przybylski90],
prefetching [Farrens89, Hill87, Smith78, Smith92],pipelining

1. During the past three ISCAs, over two thirds of the papers dealing with
uniprocessor architecture issues used the SPEC benchmarks [ISCA92,
ISCA93, ISCA94].
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[Jouppi90, Olukotun92, Palcharla94] andbypassing
[Hennessy90].

There are also software-based methods for improving I-cache
performance. Compilers can reduce conflict misses by carefully
placing procedures in memory with the assistance of execution-
profile information and through call-graph analysis [Hwu89,
McFarling89, Torrellas95]. When a cache is physically-indexed
and larger than the page size, operating systems can implement
page-allocation algorithms that more evenly distribute pages in
the cache to help prevent conflict misses [Bray90, Kessler92,
Bershad94].

Most previous studies of workloads with a significant operat-
ing system component have tended to consider simple memory
systems. Most of the effort in these studies went into the collec-
tion of complete address traces that include multi-task and operat-
ing system references. Unfortunately, the resulting address traces
are typically not publicly available and require considerable time
and resources to recollect. It is therefore difficult to reproduce the
findings of these studies or to investigate the performance of the
workloads they consider on more sophisticated memory system
designs. For this reason, most of the studies of more highly-opti-
mized memory systems tend to use easily-traceable, single-task
workloads (like those from SPEC) that do not stress instruction-
fetching hardware in a significant way.

This work distinguishes itself from previous studies by re-eval-
uating a collection of aggressive hardware-based1 instruction
fetching optimizations on a more challenging workload that is
designed to represent current trends in software development. The

Workload Description

mpeg_play mpeg_play (version 2.0) from the Berkeley Plateau
Research Group. Displays 85 frames from a com-
pressed video file [Patel92].

jpeg_play The xloadimage (version 3.0) program written by Jim
Frost. Displays two JPEG images.

gs Ghostscript (version 2.4.1) distributed by the Free
Software Foundation. Renders and displays a single
postscript page with text and graphics in an X win-
dow.

verilog Verilog-XL (version 1.6b) simulating the logic design
of an experimental microprocessor.

gcc The GNU C compiler (version 2.6)

spim The SPIM MIPS emulator written by James Larus
[Larus91]. The input is the SPEC92 espresso
program.

sdet A multiprocess, system performance benchmark
which includes programs that test CPU performance,
OS performance and I/O performance. From the
SPEC SDM benchmark suite.

nroff Unix text formatting program shipped with Ultrix 3.1.

groff GNU C++ implementation of the Unix nroff text for-
matting program. Version 1.09.

OS Description

Ultrix Version 3.1 from Digital Equipment Corporation.

Mach CMU’s version mk77 of the Mach 3.0 kernel and ver-
sion uk38 of the 4.3 BSD UNIX server.

Table 2:  The IBS Workloads

All benchmarks were compiled with the Ultrix MIPS C com-
piler version 2.1, using the -O2 optimization flag.

address traces that we have collected from the IBS workloads are
available to the general architectural community so that our find-
ings can be confirmed, and to enable further architectural studies
by other researchers.2

3 Methodology
All experiments were run on MIPS-based DECstations under

Ultrix 3.1 and Mach 3.0. Table 2 summarizes the benchmarks and
operating systems in the IBS workload suite. The IBS workloads
are mainly programs that we actually use in our day-to-day work
and that we feel exhibit poor performance. Our Mosaic WWW
browser frequently invokesmpeg_play , jpeg_play  andgs
which seem to be the limiting factor to good interactive perfor-
mance, just behind lack of network bandwidth. Theverilog
workload is a logic simulation of an experimental GaAs processor
being developed in our hardware design group. Thegcc  work-
load is similar to the SPEC workload of the same name, but uses
our more recent version of the compiler. Thespim  workload is a
MIPS-binary code emulator that is set to emulate the SPEC
espresso  program. We selected one of the workloads from the
SPEC SDM suite (sdet ) to represent our frequent use of typical
UNIX commands such asmkdir , mv, rm, find , make, diff ,
nroff , etc. Thegroff  workload is the same asnroff , but
rewritten in C++. Table 3 shows measurements made by a hard-
ware monitor which confirm that the IBS workloads exhibit many
more stall cycles due to instruction-cache misses than the SPEC92
benchmarks.

Our analysis of IBS uses two different and complementary
methods: trace-driven and trap-driven simulation. For trace-
driven simulation, we gathered address traces complete with user
and operating system references by usingMonster, a hardware
logic analyzer connected to the CPU pins of a DECstation 3100
[Nagle92]. Because the caches on this machine are implemented
off chip, all memory references were captured using this tech-
nique. Long, continuous traces were obtained by stalling the
DECstation while unloading the trace buffer in the logic analyzer

1. We do not examine the aforementioned software-based methods in this
paper.

2. Although this work only examines instruction references, the IBS
traces include all instruction and data memory references, as well as
instruction traces.

Benchmark

Execution
Time (%) Components of CPI

User OS
I-cache

(CPIinstr )
D-cache
(CPIdata)

Write
(CPIwrite )

IBS (Mach 3.0) 62% 38% 0.36 0.28 0.16

IBS (Ultrix 3.1) 76% 24% 0.19 0.30 0.11

SPECint92 97% 3% 0.05 0.08 0.06

SPECfp92 98% 2% 0.05 0.44 0.13

Table 3:  Memory Performance of the IBS Workloads

This table shows the memory-system performance of the IBS
benchmarks as measured by a hardware logic analyzer con-
nected to a DECstation 3100 (the measurements were made
in the same manner as described in Table 1). For the pur-
poses of comparison, the SPEC92 measurements from
Table 1 are duplicated here.
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whenever it became full. A total of 100 MB of references were
collected from each workload. Although stalling the processor
when the trace buffer becomes full leads to some trace distortion,
we found the resulting simulation error to be small. As a check,
simulation results using these traces were compared with mea-
surements made by a non-invasive (i.e., non-stalling) hardware
monitor and the two agreed within a 5% margin of error. To add
an additional degree of confidence to our measurements and to
take into account inherent variations in performance due to oper-
ating system effects, we use a trap-driven simulator calledTape-
worm II [Uhlig94].

We adopt a simple performance model based on cycles-per-
instruction (CPI) that focuses on instruction-fetching performance
[Emer84, Hennessey90, Smith92]:

whereCPIinstr is performance lost to I-cache misses andCPIother
is determined by the instruction-issue rate and all other sources of
processor stalls, such D-cache misses, TLB misses, CPU pipeline
interlocks and issue constraints. The I-cache component, CPIinstr
can be further factored into:

whereMPI is the I-cache miss ratio (misses per instruction) and
CPM is the I-cache miss penalty (cycles per miss).

Some of our comparisons with the SPEC92 benchmarks are
based on miss ratios reported by Gee et al. in [Gee93]. Because
Gee et al. performed their study on the same machine type (MIPS-
based DECstations) and with the same type of compiler used in
this study, meaningful comparisons can be made. For the purposes
of illustrating certain points, and to extend our analysis, we
selected certain programs from SPEC92 to perform our own sim-
ulations and measurements. These programs, the integer bench-
markseqntott , espresso , xlisp  andgcc , span the range
of SPEC benchmark sizes with respect to I-cache performance.
Gee et al. characterizeeqntott  as small,espresso  and
xlisp  as medium andgcc  as large in size.

4 Analysis of IBS
In this section, we analyze and compare the instruction-fetch-

ing requirements of both SPEC92 and IBS. Our analysis includes
a discussion of some of the reasons behind software growth and
relates these trends to our design of IBS.

4.1 The Instruction-fetching Demands of
Bloated Code

To get a clear picture of the overall I-cache requirements of the
SPEC92 and IBS suites, we measured the average performance of
their workloads in caches ranging in size from 8-KB to 256-KB
(see Figure 1). Following the Three-Cs model of cache perfor-
mance [Hill87], this graph is a stacked-bar chart that breaks the
cause of misses into three components: capacity, conflict and
compulsory misses.1 Capacity misses are removed by larger

1. I/O and paging activity can cause a significant number of compulsory
D-cache misses. However, compulsory misses account for a negligible
fraction of all I-cache misses in both the SPEC92 and the IBS work-
loads because these workload exhibit little paging in their text seg-
ments after they become cached in the filesystem disk-block cache. As
a result, compulsory misses are not visible on this plot.

CPI CPIinstr CPIother+=

CPIinstr MPI CPM⋅=

caches and conflict misses are removed by higher degrees of
cache associativity. Figure 1 clearly illustrates that the IBS bench-
marks benefit much more from larger and more associative I-
caches than do the SPEC92 benchmarks. To achieve approxi-
mately the same level of performance as the SPEC92 benchmarks
in a direct-mapped, 8-KB I-cache, the IBS workloads require a
direct-mapped, 64-KB I-cache, or a highly-associative, 32-KB I-
cache.

Table 4 gives another view of the I-cache performance of these
workloads by summarizing the individual MPI values for each of
the IBS workloads when running in an 8-KB I-cache. Note that
IBS under Mach 3.0 exhibits an MPI that is 4 times as large as
SPEC92. Also note that the same IBS workload suite running

Figure 1: Capacity and Conflict Misses in
SPEC92 and IBS

This figure shows I-cache misses per instruction (MPI) for
the SPEC92 and IBS workloads. The stacked bars show
the relative contribution of capacity and conflict misses to
the overall MPI. Capacity misses were approximated by
simulating an 8-way, set-associative cache to remove most
conflict misses. Conflict misses were found by simulating a
direct-mapped cache and counting the number of addi-
tional misses compared to the 8-way set-associative simu-
lation.
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under different operating systems exhibits different average MPI
values (The MPI under Mach 3.0 is about 25% higher than it is
under Ultrix 3.1).

In addition to MPI, Table 4 also gives the percentage of time
each workload spends executing in the OS kernel and user-level
OS servers. While the SPEC92 benchmarks tend to spend most of
their time executing in a single task, the execution of the IBS
workloads is spread across multiple address-space domains,
including the kernel and the user-level BSD and X servers. Figure
2 illustrates some differences in the structure of the SPEC92 and
IBS workloads to help explain the reasons behind their distribu-

Workload

MPI (x100)

Workload Components
(% of Execution Time)

Suite OS Application User Kernel BSD X

IBS Mach 3.0 mpeg_play 4.28 40% 23% 30% 7%

jpeg_play 2.39 67% 13% 17% 3%

gs 5.15 47% 34% 10% 9%

verilog 5.28 75% 14% 11% 0%

gcc 4.69 75% 17% 8% 0%

spim (espresso) 0.90 92% 5% 3% 0%

sdet 6.05 10% 70% 20% 0%

nroff 3.99 80% 5% 15% 0%

groff 6.51 82% 13% 5% 0%

IBS Mach 3.0 Average 4.36 62% 22% 14% 2%

IBS Ultrix 3.1 Average 3.52 76% 16% 8%

SPEC92 Ultrix 4.1 Average 1.10 98% 2% 0%

Table 4:  Detailed I-cache Performance of the IBS Workloads

This table reports misses per instruction (MPI) for individual IBS workloads when running in an 8-KB, direct-mapped I-cache with a 32-byte
line. Detailed MPI values are given for Mach 3.0 only. For the purposes of comparison, the average MPI for the IBS workloads running
under Ultrix 3.1 and the SPEC92 benchmarks running under Ultrix 4.1 are also given. The SPEC92 results are based on miss ratios
reported by Gee et al. in [Gee93]. Workload components include the user application task(s), the Mach 3.0 kernel, and the BSD and X dis-
play servers. The relative importance of each of these Workload Components is given as a fraction of total execution time.

Name
Service

AFS File
Service

stdio

Figure 2: The Components of the SPEC92 and IBS Workloads

Most of the SPEC92 benchmarks consist of a single task that only rely on the operating system to load their executable text and for small
file reads. The IBS workloads, however, consist of several modules that communicate through same-task or remote-task procedure calls.

4.3 BSD
Service X Display

Service
A SPEC92

Ultrix Kernel Mach Kernel

File System
Networking

• Paging and VM • Mach Threads (and Scheduling)

External
Paging

User Task

• File System (e.g., UFS, AFS)

• Mach Tasks (Virtual Address Spaces)

• Mach Ports (Inter-process Communication and RPC)

Service

A Core IBS
User Task

tk

Xlib

BSD API
Emulation

X Window
Manager

tions in execution times, and the resulting differences in their I-
cache performance. Each of the SPEC92 benchmarks generally
consist of a single task that only uses the operating system to load
its executable text and to provide some minimal file service for
reading inputs. On the other hand, the IBS workloads are com-
posed of many more components, reflecting the increasingly mod-
ular nature of modern applications and operating systems. For
example, they each link multiple code libraries to gain access to a
variety of OS services that are themselves implemented in modu-
lar, independent units.
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4.2 Reasons for Code Bloat
The benchmarks in IBS were carefully selected to reflect sev-

eral software-development practices that inevitably lead to growth
in program sizes. These development practices are a consequence
of increasing demands on softwarefunctionality, portability and
maintainability by both application users and developers.

Functionality

To remain competitive, software developers are under constant
pressure to add new features and functions to their programs. For
example, many commercial applications now support the capabil-
ity to output non-textual data (graphs, images, video, etc.) in a
graphical user interface. Such features are usually implemented
with the help of multiple layers of system software that comprise
a window system. The dominant window system in UNIX-based
workstations is X11 [Scheifler86], which includes an X display
server, a window manager and a set of application-linked libraries
that implement the core X calls and higher-level graphical objects
such as thetk  widget set [Ousterhout94]. The use of any X appli-
cation implies that all of these layers of code will be activated,
increasing instruction path lengths over workloads with simple
textual user interfaces. The IBS workloads represent the overhead
of graphics functionality by including the X applications
jpeg_play  andmpeg_play , which decode and display com-
pressed still images and moving video, respectively. IBS also
includesgs , a postscript interpreter that renders full-page layouts,
consisting of text and graphics, in an X window.

Some applications bloat in size over time because new func-
tions are added to their own core code. As an example of this, IBS
includes a recent version of thegcc  benchmark which exhibits an
MPI that is about 15% higher than the older (and smaller) version
of gcc  used in SPEC. We also include the logic simulatorver-
ilog , which has steadily grown in size with each new release,
and has one of the highest miss ratios among all the applications
in IBS.

Portability

To reach the largest possible marketplace, software developers
must contend with the problem of making their applications run
under several different operating systems and instruction-set
architectures. The IBS workloads represent two different software
techniques that increase application portability:API emulation
andABI emulation.

Porting an application to a different operating system requires
that it be rewritten to use theapplication-procedure interfaces or
APIs of the new host OS. To simplify this process, some operating
systems, such as Windows NT [Custer93], Mach 3.0 [Accetta86],
and others [Bomberger92, Cheriton84, Malan91, Rozier92,
Wiecek92] have been designed to emulate multiple APIs. Over-
head due to API emulation is represented in IBS through the use
of a 4.3 BSD emulation library that is dynamically linked into the
address space of each user application. To isolate this effect,
Table 4 also gives the average MPI of IBS running under Ultrix
3.1, a system that does not include the overheads of API emula-
tion. The difference in MPI between the two systems is also due,
in part, to other structural differences between Ultrix and Mach
(see the next section on maintainability).

By emulating oneapplication-binary interface (ABI) in terms
of another, some of the difficulties with porting an application to a
new instruction-set architecture can be avoided. ABI emulation is
sometimes used to ease the transition from an older processor
architecture to a newer one. For example, DEC implements ABI
emulation by statically translating VAX and MIPS binaries into

Alpha binaries [Sites92]. Apple uses a similar strategy to dynami-
cally translate 68040 binaries to the PowerPC architecture
[Koch94]. Several other examples of ABI emulators are given in
[Cmelik94]. ABI emulation causes code bloat because several
host instructions are usually required to emulate a single source
instruction. An emulation environment typically also includes a
large amount of additional execution state, such as translated
instruction blocks or jump tables that lead to frequent indirect
jumps [Cmelik94]. We represent ABI emulation in our benchmark
suite withspim , which emulates the MIPS instruction set on a
variety of other architectures including the SPARC, HP-PA, x86
and the MIPS itself [Larus91]. The IBSspim  workload emulates
a MIPS binary of theespresso  SPEC benchmark and exhibits
an MPI that is approximately 3 times the normal MPI of
espresso  when not being emulated.

Maintainability
As it grows in size and complexity, application and system

software becomes increasingly difficult to maintain. To help man-
age this complexity, software developers rely on techniques such
as object-oriented programming and the restructuring of code into
independent and interchangeable modules. For example, the Win-
dows NT Executive bases all of its system abstractions, such as
processes, threads and files on an object-oriented model
[Custer93]. Windows NT also separates its different API servers
(Win32, OS/2, POSIX, etc.) into independent modules or sub-
systems that are loaded into the system only as needed [Custer93].

The benefits of object-oriented and modular code are well-rec-
ognized [Budd91], but because they incur a variety of overheads,
these techniques come with a cost. The IBS benchmark suite rep-
resents these costs in two ways. First, we run the IBS benchmarks
under Mach 3.0, a micro-kernel operating system that uses modu-
larity concepts similar to Windows NT by implementing portions
of its code in separate user-level servers. As noted previously, the
average MPI of the IBS benchmarks running under Mach is about
25% higher than when they run under the less modular, mono-
lithic-kernel Ultrix. Second, IBS includes the benchmarkgroff
which is the nroff  text-formatting program rewritten in an
object-oriented programming language (C++). Notice from
Table 4 that the MPI ofgroff  is about 60% higher than that of
nroff  when run on the same input. Although IBS currently

Parameters

Configuration

Economy High Performance

Next Level in Hierarchy Main Memory Ideal Off-chip Cache

Latency (Cycles) 30 12

Bandwidth (Bytes/Cycle) 4 8

CPIinstr (SPEC) 0.54 0.18

CPIinstr (IBS) 1.77 0.72

Table 5:  CPI instr  for Base System Configurations

Both configurations contain an 8-KB, direct-mapped, on-chip
L1 I-cache. In the economy configuration, the L1 I-cache is
backed by main memory (30 cycle latency, 4 bytes per cycle)
while the high-performance configuration is backed by a
large, off-chip cache (12 cycle latency, 8 bytes per cycle). For
our base configurations, we consider an ideal off-chip cache
with zero contribution to CPIinstr. Our simulations show that
for IBS, a 512-KB, direct-mapped I-cache would be close to
ideal, contributing only 0.03 to the total CPIinstr. These laten-
cies and bandwidths were selected by surveying a number of
processors in [MReport94].
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includes only one C++ program, we believe thatgroff  is repre-
sentative of the poor I-cache performance exhibited by C++ pro-
grams in general. This assertion is supported by the recent work of
Calder et al. who have performed a more detailed study of 10 C
and 10 C++ programs in [Calder94]. Calder et al. report that to
achieve equivalent average miss ratios, the C++ programs consid-
ered in their study require I-caches that are about four times as
large as those required by their C programs.

4.3 Analysis Summary

The IBS workloads were selected to represent basic pressures
on software development that invariably lead to larger programs.
Although it could be argued that the programs in IBS could be
rewritten to remove their various inefficiencies, they would also
lose many of their desirable properties with respect to functional-
ity, portability and maintainability. Therefore, we take these
trends as given and now focus on ways to design instruction-

Figure 3: Total CPI instr  vs. L2 Line Size

These plots show the CPIinstr when an on-chip, direct-
mapped L2 cache is added to both baseline configura-
tions. The L2 cache provides the L1 cache with a 6-cycle
latency and 16 bytes per cycle. This reduces the L1 I-
cache CPIinstr to 0.34. Total CPIinstr is computed by adding
this value to the stalls caused by L2 misses.

The dotted lines represent the CPIinstr for the baseline con-
figurations.
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fetching hardware to help recover some of the performance lost to
bloated code.

5 Instruction Fetch Support for IBS
The IBS workloads require significantly larger I-caches to

achieve the same miss rates as the SPEC benchmarks, but cycle-
time constraints prevent level-1 (L1) caches from providing the
size and/or associativity necessary to deliver good performance
[Jouppi94]. However, integration levels have reached a point
where small L1 caches can be supported by a variety of on-chip
structures that reduce the L1 miss penalty. The remainder of this
paper examines the effectiveness of some of these structures when
supporting IBS.

Our analysis begins with two baseline configurations outlined
in Table 5. Theeconomy configuration represents a low-end mem-
ory system, while thehigh-performance configuration represents
a more-costly, but better-performing memory system that imple-

Figure 4:  CPI instr  vs. L2 Associativity

These plots show the performance benefits of L2 cache
associativity in both baseline configurations. Notice that the
performance of the economy configuration with an 8-way,
set-associative cache is nearly equivalent to that of a
direct-mapped cache backed by a high-performance mem-
ory system.

The dotted line represents the best CPIinstr for the direct-
mapped, 64-byte line, 64-KB configurations in Figure 3.
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Figure 5: Variability in CPI instr  versus I-cache Size
and Associativity

These plots show variability in performance over multiple
runs of the same workload in a physically-indexed I-cache.
Performance varies because the allocation of virtual pages
to physical cache page frames is different from run to run.
Variability is reported on the y-axis in terms of one stan-
dard deviation of CPIinstr.
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ments an off-chip cache between the on-chip caches and main
memory. We extend both configurations by adding an on-chipsec-
ond-level (L2) cache and then exploring various L2 design
tradeoffs. After arriving at an optimized L2 design, we consider
how bandwidth, prefetching, bypassing andpipelining the L1-L2
interface can further improve performance.

Throughout this section, we draw on the work of numerous
researchers who have explored various instruction-fetching tech-
niques, including multi-level caching, prefetching and pipelined-
memory systems [Farrens89, Hill87, Kessler91, Jouppi90,
Jouppi94, Olukotun92, Przybylski,89, Smith78, Smith82]. This
work uses IBS to compare and evaluate these various architectural
mechanisms under a more challenging workload. Throughout this
analysis, we only consider instruction references. This allows us
to factor away data-reference effects that might cloud our specific
study of instruction fetching behavior. However, because an L2
cache is likely to be shared by both instructions and data, our
results represent a best case relative to an actual system.

5.1 Configuring Multi-level Caches for IBS

Our first optimization adds a non-pipelined on-chip L2 cache
to both baseline configurations. Figure 3 plots the resulting com-
bined L1 and L2 contributions to CPIinstr across a range of L2
cache and line sizes. For even the smallest L2 cache, the perfor-
mance of the economy configuration improves over the baseline
configuration, provided that the line size is tuned. However, the
high-performance system requires at least a 32-KB or 64-KB on-
chip cache to improve over its baseline. At 64-KB, the economy
configuration’s performance actually matches the high-perfor-
mance baseline configuration (Table 5). This suggests that a pro-
cessor with a 64-KB on-chip L2 I-cache and an economy memory
system could provide better I-fetch performance than a processor
with high-performance memory system where the L2 cache is
implemented off-chip.

Because an L2 cache is not in the critical path, its associativity
is not restricted in the same way as our baseline L1 cache.1

Figure 4 shows the benefits of L2 cache associativity. Notice that
both configurations exhibit the greatest reduction in CPIinstr
(approximately 40%) between the direct-mapped and 2-way set-
associative caches; further increases in associativity (up to 8-way
set-associative) only reduce CPIinstr another 20%.

Increased associativity improves miss rates by reducing con-
flict misses. As a result, associativity also reduces variability in
performance caused by OS page-mapping effects in a physically-
indexed cache [Kessler91, Sites88]. Figure 5 shows that the
amount of variability is a function of the workload, cache size and
associativity. Workloads such aseqntott  and espresso
(from the SPEC benchmark suite) tend to exhibit little perfor-
mance variation, but certain workloads from IBS (such asspim ,
verilog  andgs ) are highly variable with certain cache sizes.
The plots also show that small amounts of associativity reduce
variability by avoiding conflict misses before they happen. This
suggests that on-chip, associative L2 caches offer an attractive
alternative to the recently-proposed cache miss lookaside (CML)
buffers [Bershad94].

1. The additional delay due to the associative lookup will increase the
access time to the L2 cache, possibly increasing the L1-L2 latency by 1
full cycle. This would increase the L1 contribution to CPIinstr from
0.34 to 0.38. It is also possible that the increase would be small enough
so as not to impact the latency. Przybylski [Przybylski88] and Wilton
[Wilton94] present detailed models that more accurately account for
these effects.
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A final advantage of associativity is that it allows designers to
add cache memory in increments smaller than a power of two.
Recent examples of this include the SuperSPARC, with its 5-way,
20-KB L1 I-cache and the DEC 21164, with its 3-way 96-KB L2
cache [MReport92, MReport94]. This is especially important for
on-chip caches because chip size and layout constraints might
provide enough area to increase a cache’s associativity by 1, but
not enough area to double the size of the cache. The ability to
change cache sizes in smaller increments also helps to more opti-
mally allocate chip die-area among various on-chip memory-sys-
tem structures (I-cache, D-cache, TLB) [Nagle94].

5.2 Tuning the L1-L2 Interface
For both configurations, a 64-KB 8-way, set-associative L2

cache contributes less than one third to the total CPIinstr, making
the L1 I-cache the performance bottleneck. Although the basic
structure of (size and associativity) of the L1 I-cache is con-
strained, a number of optimizations to the interface between the
L1 and L2 caches is still possible. We now focus on such tech-
niques.

Bandwidth

Figure 6 plots the impact of increasing L1-L2 transfer band-
width on L1 cache performance. The plot also shows that a side-
effect of increased bandwidth is an increase in the optimal L1 line
size (denoted by the black symbols). This benefits cache design in
two ways. First, increasing the line size decreases the size of the

Figure 6: Bandwidth and L1 CPI instr  vs. Line Size

This figure shows the L1 contribution to CPIinstr for an 8-
KB direct-mapped I-cache backed by an L2 cache with a
6-cycle latency. Note that for bandwidths greater than 16
bytes/cycle, the optimal L1 line size is actually greater than
the optimal L2 line size. This is due to the large difference
in bandwidth and latency between the upper and lower lev-
els of the memory hierarchy.

The execution model for this figure assumes the processor
must wait for the entire cache line to refill before it resumes
execution.
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cache tags. Second, the reduction in area reduces the cache access
time. The Mulder area model predicts a 10% reduction in area
when moving from a 16-byte to a 64-byte line (8-KB, direct-
mapped cache) [Mulder91], while the Wilton and Jouppi timing
model shows a 6% decrease in access time [Wilton94].

The incremental improvements due to increasing bandwidth
begin to diminish for rates greater than 16 bytes/cycle. Moreover,
building large cache busses (> 128 bits) can consume a significant
amount of chip area and possibly impact the overall cache size.
This suggests that once the L1-L2 interface reaches a bandwidth
of 16 or 32 bytes/cycle, other techniques might be better suited to
improving the L1 cache performance. To investigate this, we fixed
the L1-L2 interface at 16 bytes/cycle and used this configuration
to examine the effects of prefetching, bypassing and pipelining.

Prefetching

One simple prefetch strategy is sequential prefetch-on-miss,
where a cache miss is serviced by fetching both the missing line
and the next N sequential lines into the cache. Table 6 shows that
for small line sizes, prefetching can significantly improve perfor-
mance. The table also shows a result previously noted by Smith
[Smith82]: prefetching over multiple small lines yields better per-
formance than implementing a cache with longer lines. For exam-
ple, the cache with the 64-byte line has a CPIinstr of 0.297 while
the cache with the 16-byte line and 3 prefetched lines has a lower
CPIinstr of 0.260. Both configurations return 64 bytes of instruc-
tions, but the system with the longer line size forces it to fetch
more potentially useless instructions. This is particularly true for a
miss on the second half of a long cache line because the system
must fetch the first half of the line. Our simulations show that
when the miss occurs near the end of a line, instructions in the first
part of the line are often evicted from the cache before they are
referenced. The finer granularity of a 16-byte line overcomes this
problem by beginning the fetch closer to the missing word while
allowing the system to prefetch instructions that have a greater
potential for being referenced.1

1. Our simulations also show that a 64-byte line with 16-byte sub-block
placement can perform almost as well as a 16-byte line with 3 line
prefetch. On a cache miss, the system only refills the missing sub-
block and all subsequent sub-blocks in the line. While the sub-block
configuration had more cache pollution, the decrease in refill cost pro-
vided the performance gains.

Number of Line Size (Bytes)

Lines Prefetched 16 32 64

0 0.439 0.335 0.297

1 0.305 0.271 —

2 0.270 — —

3 0.260 — —

Table 6:  Prefetching

This table shows the L1 CPIinstr for various line sizes and
prefetch lengths. The L1-L2 bandwidth is 16 bytes/cycle and
the execution model assumes that the processor must stall
until both the miss and the prefetches are returned to the
cache.

The cells with an “—”, denote data points that are either not
reasonable, or that show an increase in CPIinstr.
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Bypassing

Sequential prefetch-on-miss can be enhanced by placing the
missing line into both the cache and into special bypass buffers.
These dual-ported buffers allow the processor to continue execu-
tion as soon as the missing word has returned from the L2 cache.
Under this scheme, as the cache refills, the processor may only
fetch instructions from the bypass buffers. Table 7 shows CPIinstr
with and without bypassing logic.

A different policy is to only cache prefetched lines if they are
used by the processor. This eliminates any cache pollution due to
prefetching. However, our simulations show that this policy does
not improve performance over prefetching into the cache. Unless
prefetched instructions are used almost immediately, they are
likely to be replaced due to the limited number of bypass buffers.
Placing the prefetched data into both the cache and bypass buffers
increases the chance that a prefetched instruction will be available
if it is accessed later in a program run. This is particularly useful
for short subroutine calls and forward branches in loops.

Pipelining

The final enhancement we investigate is pipelining the L1-L2
interface, which allows the L2 cache to accept and fill a request on
every cycle with some latency between requests and refills. Dur-
ing cycles where the processor hits in the cache, the pipeline is
kept busy with sequential prefetch requests1. Prefetches are stored
in a special buffer, called a Stream Buffer [Jouppi90]. The stream
buffer is a fully-associative memory with 1 or more lines and is
very similar to a bypass buffer.

The results (see Table 8) show that streams buffers effectively
improve I-fetch performance until they reach sizes of about 6
lines, after which the improvements are marginal. However,
stream-buffer performance might be further improved by imple-
menting multiple stream buffers and switching between the
stream buffers on subroutine jumps. This would be particularly
useful for short leaf-node function calls. Another optimization
would be to add a target prefetch table [Smith78]. This table
would store the addresses of non-sequential pairs of lines. As

1. Pipelining the memory system also allows data references to be mixed
with prefetch requests.

Number of
Lines

Prefetched
Line Size (Bytes)

No Bypass Buffers
Line Size (Bytes)

With Bypass Buffers

16 32 64 16 32 64

0 0.439 0.335 0.297 — 0.296 0.226

1 0.305 0.271 — — 0.218 0.224

2 0.270 — — 0.205 — —

3 0.260 — — 0.181 — —

Table 7:  Bypassing

This table compares the performance of configurations with
and without bypass buffers. The bypass buffers significantly
reduce CPIinstr by allowing the processor to continue execu-
tion as soon as the missing word returns.

For each system, there are as many bypass buffers as lines
returned from the memory system (fetched + prefetched
lines). The cells with an “—”, denote data points that are
either not reasonable or that show an increase in CPIinstr.

every fetch or prefetch is issued into the pipelined memory sys-
tem, the table is checked to see if there exists an entry. If so, the
next prefetch would use the address stored in the table and not a
sequential address. We are currently evaluating both techniques.

Summary of Optimizations

Figure 7 summarizes the optimizations. For both configura-
tions, adding an associative L2 cache provides the largest perfor-
mance gains, especially in the case of the economy system. The
largest improvements in the L1-L2 interface are due to pipelining.
In the high-performance system, the L1 CPIinstr (0.11 for the 16-
byte/cycle configuration) is the dominant factor in total CPIinstr
(0.18). While this an acceptable level of I-cache performance for a
single-issue machine, dual- or quad-issue machines with a mini-
mum CPI of 0.50 and 0.25, respectively, will spend a considerable
amount of time stalling on I-cache misses.

Our conclusions would be very different if we had used the
SPEC benchmark suite. For example, the optimal on-chip L2 line
size for SPEC is (at least) 256 bytes, and associativity decreases
CPIinstr a mere 0.026. Under SPEC, the optimal L2 cache configu-
ration would have a total CPIinstr of only 0.083, before any opti-
mizations to the L1-L2 interface. Some L1 enhancements would
also yield significantly different results. For example, the optimal
8-KB L1 line size for a 16-byte/cycle configuration is 128 bytes,
which is double the optimal line size for IBS. However, with a
CPIinstr of only 0.083, there is little motivation to consider the L1-
L2 interface optimizations.

6 Conclusions and Future Work
Relying on the SPEC benchmarks to predict the instruction

performance of a proposed memory system design would be
unwise, since they are simply unreflective of the complex applica-
tions that will run on new machines. We have suggested an alter-
native set of benchmarks and have described the ways in which
they illustrate trends in software leading to relatively poor instruc-
tion locality. Using these benchmarks, we have shown how one
might design and refine a two-level on-chip cache. This design is
quite different than that one might choose based on the SPEC92
benchmarks alone. Simulation results show that this design con-
tributes at least 0.18 cycles to the CPI. This is a considerable

Number of Lines
in Stream Buffer

16 Bytes/Cycle
CPIinstr

32 Bytes/Cycle
CPIinstr

0 0.439 0.287

1 0.267 0.186

3 0.184 0.137

6 0.147 0.118

12 0.122 0.103

18 0.114 0.099

Table 8:  Pipelined System with a Stream Buffer

The L1 cache line size is set by the bandwidth between the
L1 and L2 caches (16 or 32 bytes/cycle). This allows the
memory system to accept a request on every cycle.

This execution model assumes that instructions can be
moved from the stream buffer to the I-cache without incur-
ring a penalty. Some implementations may incur a 1 cycle
penalty during the move if an instruction fetch cannot be ser-
viced by the stream buffers.
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reduction from an initial baseline design, but shows that instruc-
tion-fetch overhead will be a dominant component of the execu-
tion time of multi-issue processors with very short cycle times,
operating out of small primary caches.

The full traces used in this study are available by sending E-
mail to the authors. These traces include both instruction and data
memory references and cover the full activity of all user and ker-
nel processes. By making these full traces available, we hope to
encourage wider explorations of memory systems and the com-
parison of results between investigators.
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