
1

Abstract: Tapeworm II is a software-based simulation tool that
evaluates the cache and TLB performance of multiple-task and
operating system intensive workloads. Tapeworm resides in an OS
kernel and causes a host machine’s hardware to drive simulations
with kernel traps instead of with address traces, as is convention-
ally done. This allows Tapeworm to quickly and accurately cap-
ture complete memory referencing behavior with a limited
degradation in overall system performance. This paper compares
trap-driven simulation, as implemented in Tapeworm, with the
more common technique of trace-driven memory simulation with
respect to speed, accuracy, portability and flexibility.

Results: For reasonable miss ratios, Tapeworm simulations
are significantly faster than traditional trace-driven simulations.
Tapeworm typically slows a system down by less than an order of
magnitude (10x) when cache miss ratios are under 10%, and
slowdowns approach zero as miss ratios decrease. Tapeworm can
employ set sampling techniques to further reduce slowdowns, but
at the expense of higher measurement variance. Unlike trace-
driven simulations, which typically produce identical results from
run to run, trap-driven simulations exhibit greater sensitivity to
inherent variations in memory system behavior on a real machine.
Less than 5% of Tapeworm’s code is machine-dependent, enhanc-
ing its portability to different machines provided that they support
a few essential primitive operations. Although the trap-driven
approach is flexible enough to simulate most TLB and cache con-
figurations, other architectural structures, such as write buffers or
instruction pipelines cannot be simulated with this approach.
Tapeworm implementations currently exist for TLB and instruc-
tion cache simulation on MIPS-based DECstations and for TLB
simulation on a 486-based Gateway PC.

Keywords: memory system, cache, TLB, simulation, trace-
driven simulation, trap-driven simulation

1 Introduction
Trace-driven simulation is probably the most popular method

for evaluating memory system architectures consisting of caches
and TLBs [Smith82, Holliday91]. This technique has worked well
in the design of memory systems supporting single-task, user-
intensive applications such as those found in the SPEC bench-
mark suite [Gee93, SPEC91]. However, there is a growing body
of work showing that memory systems tuned to this type of work-

Trap-driven Simulation with Tapeworm II

Richard Uhlig, David Nagle, Trevor Mudge & Stuart Sechrest

Department of Electrical Engineering and Computer Science
University of Michigan

e-mail: uhlig@eecs.umich.edu, bassoon@eecs.umich.edu

This work was supported by Defense Advanced Research Projects Agency
under DARPA/ARO Contract Number DAAL03-90-C-0028, by a National
Science Foundation CISE Research Instrumentation Grant No. CDA-
9121887, by a Digital Equipment Corporation Grant, and by a National Sci-
ence Foundation Graduate Fellowship.

load do not perform as well on interactive and digital-media appli-
cations, or with distributed file systems and databases, all of which
require frequent interaction with the operating system or other tasks
[Agarwal88, Anderson91, Chen93a, Cvetanovic94, Mogul91,
Nagle93, Nagle94, Uhlig94b, Ousterhout89]. Unfortunately, most
trace-driven simulation tools are limited to single user-mode tasks
and thus cannot capture a significant portion of the memory system
activity of these applications. Those trace-driven simulators that are
OS-capable tend to rely on expensive hardware monitoring equip-
ment and are generally not very portable.

We have developed a software-based tool, called Tapeworm II,
that attempts to overcome some of these limitations. Tapeworm
simulations are driven not by traces, but by traps into the operating
system kernel where Tapeworm resides. Each kernel trap corre-
sponds to a simulated TLB or cache miss. This approach has three
principal advantages: (1) Completeness, (2) Speed and (3) Portabil-
ity. Tapeworm simulations are complete because traps can originate
from any user task, or even the OS kernel itself. Tapeworm is fast
because the simulator is invoked only in the uncommon case of
TLB or cache misses. Finally, because Tapeworm is software-
based, it can be ported to any system that provides support for cer-
tain key primitives.

Despite these advantages, this method does suffer from certain
drawbacks. Although capable of simulating TLBs and caches with
different sizes and associativities, trap-driven simulation is gener-
ally less flexible than trace-driven approaches with respect to the
simulation of other architectural structures, such as write buffers or
instruction pipelines. Tapeworm’s presence in a system can also
introduces new forms of measurement bias. Though not strictly a
disadvantage, trap-driven simulations are also more sensitive to
inherent variations in memory system performance, an issue which
is generally ignored in trace-driven simulation studies.

This paper presents a detailed description of the Tapeworm
design in Section 3 and then uses this prototype to compare the
strengths and weaknesses of trap-driven simulation against trace-
driven simulation in Section 4. We begin with a discussion of
related work in the next section.

2 Related Work
To capture multi-task and OS activity, memory architecture

studies traditionally have relied on hardware instrumentation tech-

To appear in the 6th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-VI), October 5-7, 1994, San Jose, California

trev
Typewritten Text

trev
Typewritten Text

trev
Typewritten Text

trev
Typewritten Text
6th International Conference on Architectural Support for Programming Languages and Operating Systems. October, 1994. pp. 132-144.

2

niques that either attach extra hardware to a running system, mod-
ify the existing hardware (or microcode) or are designed into the
architecture [Agarwal86, Alexander85, Clark83, Cvetanovic94,
Flanagan92, Nagle92, Torrellas92]. Unfortunately, these hardware
approaches are costly to implement and are usually tied to a single
machine.

To overcome these limitations, recent research has extended
software-only instrumentation techniques to include multi-process
and OS activity. Mogul and Borg describe a system where each
task in a multi-task workload is instrumented to make entries in a
system-wide trace buffer [Mogul91]. A modified operating system
kernel interleaves the execution of the different user-level work-
load tasks according to usual scheduling policies and invokes a
memory simulator whenever the trace buffer becomes full. Chen
has further extended this technique to include annotation of the
OS kernel itself, thus enabling complete accounting of all system
activity [Chen93b].

A few simulators avoid traces entirely and are driven, instead,
by kernel traps. These tools use privileged machine operations to
cause the underlying host hardware to filter hits in a simulated
memory structure, and only trap to the simulator on a miss. One
example of this approach is the first generation of Tapeworm
which performs TLB simulation [Nagle93, Uhlig94a]. This sys-
tem intercepts kernel traps to the software-managed TLB miss
handlers of an R2000-based DECstation to drive a TLB simulator.
Because all user and kernel misses are intercepted, Tapeworm is
able to fully consider multi-task and OS effects for different TLB
configurations. Talluri describes a similar trap-driven TLB simu-
lator that runs on SPARC-based workstations [Talluri94]. Another
example, the Wisconsin Wind Tunnel (WWT) simulator, is also
based on kernel traps that are set and cleared by modifying the
error-correcting code (ECC) check bits in a SPARC-based CM-5
[Reinhardt93]. Unlike Tapeworm, which performs only uni-pro-
cessor simulations but includes multi-task and kernel references,
WWT is designed to investigate multi-processor cache coherence
algorithms but does not capture OS activity.

Other work shares some of the properties of both trace-driven
and trap-driven simulation [Cmelik94, Lebeck94, Martonosi92].
These hybrid approaches annotate a program to invoke simulation
handlers on every memory reference. In these systems, simula-
tions can be optimized by calling a null handler on memory loca-
tions known to be in a simulated cache or TLB.

This paper advances previous work in two significant ways.
First, it describes the design of a second-generation Tapeworm
which combines the OS-capable features of the original Tape-
worm TLB simulator with a WWT-like mechanism for setting

fine-grained memory traps. The resulting simulator is capable of
both cache and TLB simulation and captures multi-task and OS
kernel activity. Second, using Tapeworm as a prototype, we inves-
tigate the positive and negative aspects of trap-driven simulation
in general.

This paper is primarily a study of the pros and cons of trap-
driven simulation. For examples of actual studies of operating
system and architecture interactions that have used Tapeworm, see
[Nagle93, Nagle94, Uhlig94b].

3 Tapeworm Design

3.1 The Tapeworm Algorithm

The Tapeworm simulation algorithm is best explained by con-
trasting its essential features against those of a traditional trace-
driven simulator. We shall use the term cache in the following dis-
cussion, although these methods apply equally well to TLB simu-
lation.

At its core, trace-driven simulation executes a loop similar to
that shown on the left side of Figure 1. The processing steps
include obtaining the next address in the trace, searching for that
address in a simulated cache, and then invoking a replacement
policy in the event of a miss. The trace addresses can come from a
file created by a trace-extraction tool, or they might be generated
“on the fly” by an annotated workload [Agarwal86, Borg90,
Chen93b, Cmelik94, Eggers90, Holliday91, Hsu89, Larus90,
Larus93, Magnusson93, MIPS88, Mogul91, Sites88, Smith91].
The search procedure involves indexing a data structure that rep-
resents the cache and then, depending on the associativity of the
cache, performing one or more comparisons to test for a hit.
Though a simple operation, the search and test must be performed
for every address in the trace.

Tapeworm operates on a different principle. It is driven not by
address traces, but by traps into the operating system kernel where
Tapeworm resides. Tapeworm begins a simulation by setting traps
on all memory locations in a workload’s address space. Locations
with traps set represent memory locations not currently resident in
the simulated cache structure. As the workload executes, the first
reference to each location causes a trap into the kernel, which is
directed to the Tapeworm simulator. Because all such traps repre-
sent simulated cache misses, there is no need to search a data
structure representing the simulated cache. Tapeworm simply
counts the miss and then clears the trap on the required memory
location. Clearing the trap effectively caches the memory location

Figure 1: Trace-driven versus Trap-driven Simulation Algorithms

The core execution loops of trace-driven and trap-driven simulators. This code abstracts away many details of actual simulation, such as the treatment of
writes and assigning penalties for different types of misses (e.g., in a critical-word-first cache). Single-pass simulators, using stack algorithms, also have a
more complex structure [Mattson70, Sugumar93, Thompson89].

Trap-driven

kernel traps invoke tw_miss(address):

tw_miss(address){
miss++;
tw_clear_trap(address);
displaced_address = tw_replace(address);
tw_set_trap(displaced_address);

}

Trace-driven

while (address = next_address(trace)){
if (search(address))

hit++;
else {

miss++;
replace(address);

}
}

3

in the simulated cache structure, because subsequent references to
this location do not trap and will proceed at full hardware speed.
Tapeworm then sets a new trap on a different memory location, in
accordance with some replacement policy, to emulate displace-
ment in the simulated cache structure.

The Tapeworm design offers a number of advantages over
trace-driven simulation. First, no annotation or rewriting of the
workload is required because traps are dynamically set and
cleared while the workload runs. Second, Tapeworm’s kernel
privileges allow it to easily set traps on any user-level task, as well
as the kernel itself. This enables the study of multi-task and OS
interactions. Third, Tapeworm uses the underlying hardware to fil-
ter out hits in the simulated cache structure. This can provide
speed advantages over conventional trace-driven simulation (see
Section 4.1).

3.2 Tapeworm Primitives

Although we have outlined the core Tapeworm algorithm, a
number of important details, such as mechanisms for setting
memory traps and policies for registering workload pages with
Tapeworm, need to be clarified. Table 1 describes the key Tape-
worm primitives.

The Tapeworm operations of setting and clearing traps are per-
formed by tw_set_trap() and tw_clear_trap() which
can be implemented on many machines by using various privi-
leged operations intended for diagnostics or debugging (see
Table 2). For example, a trap can be set by using a diagnostic
mode to alter the parity bits for a given memory location [Rein-
hardt93]. Subsequent use of that memory location will result in a
memory parity error trap. The trap can be cleared by restoring cor-
rect parity to the memory location. Other mechanisms, such as

Table 1: Tapeworm Primitives in Detail

Routine Description

tw_set_trap(pa, size)

Set a memory trap starting at pa (physical address) and extending for size bytes. Subsequent use of memory loca-
tions in this region should trap to the kernel and pass control to Tapeworm.

tw_clear_trap(pa, size)

Clear all previously set memory traps starting at pa and extending for size bytes. Subsequent use of memory in this
region by a workload may proceed uninterrupted.

tw_register_page(tid, p, v)

Register a page with Tapeworm. The page is added by setting traps on all of its physical memory locations starting at
the page address p. The task ID (tid) and the virtual to physical page mapping defined by (p,v) are recorded by
Tapeworm to enable virtually-indexed or physically-indexed cache simulations.

tw_remove_page(tid, p, v)

Remove the page define by (tid, p, v) from the Tapeworm domain. The page is removed by flushing it from the
simulated cache and clearing all traps on its memory locations.

tw_attributes(tid, simulate, inherit)

Set Tapeworm attributes for the task identified by tid. A tid of zero signifies the kernel. A non-zero value
of simulate registers a task with Tapeworm. A non-zero value of inherit indicates the initial value of the simu-
late attribute for children of the task.

tw_replace(tid, pa, va)

Insert a missing memory location, defined by a pa (for a physically-indexed cache) or va (for a virtually-indexed
cache) into a data structure for a simulated cache. If needed, the tid is used to form part of the cache (or TLB) tag.
A displaced entry, selected on the basis of various simulation parameters such as cache size, line size or associativity,
is returned by the call.

instruction and data breakpoints or page valid bits, work equally
well if they are supported by the host hardware.
tw_set_trap() and tw_clear_trap() accept a size param-
eter to support a range of simulation parameters, such as various
page sizes for TLB simulation and various line sizes for cache

Table 2: Privileged Operations Useful for Trap-driven
Simulation

This table summarizes some of the privileged operations that are use-
ful building blocks in a trap-driven memory simulator. These are com-
mon operations on many existing architectures (see Table 12).

Privileged
Operation

Description

Memory Parity or
ECC Traps

Trap to the OS kernel after detecting a memory-par-
ity error. Read and write operations enable software
to change the parity bits associated with each mem-
ory location.

Instruction Break-
point

Trap to the OS kernel if a breakpoint instruction is
encountered.

Data Breakpoint Trap to the OS kernel if a specific data memory loca-
tion is read or written.

Var iab le Page
Size

Support for different sized pages. Typical page sizes
range from 128 byte to 1-Mbyte.

Ins t ruc t ion
Counters

Count the total number of instructions executed by
the processor.

4

simulation. The actual trapping mechanism selected for the under-
lying implementation of these routines depends on the size of trap
required. For TLB simulation, where the granularity is large, page
valid bits are most effective, particularly if the machine supports
variable page sizes. Memory parity traps or breakpoints (perhaps
set in clusters of more than one) are the best choice for cache sim-
ulation, where the required granularity is on the order of a cache
line.

Using memory parity or ECC check bits to cause kernel traps
can interfere with their intended purpose of detecting true mem-
ory errors. In practice, this is only a problem if memory errors are
frequent and if it is not possible to distinguish true ECC errors
from those caused by Tapeworm. In our experience, neither condi-
tion is true. While Tapeworm has been inactive on the system in
which it runs, we have only logged one true single-bit ECC error
during nearly a year of operation. Even when Tapeworm is active,
it correctly detects true memory errors with high probability.1

As noted previously, workloads require no previous modifica-
tion for Tapeworm simulation because traps are set and cleared
dynamically as tasks run. For this to work, Tapeworm requires
assistance from the OS virtual memory (VM) system. When a task
faults on the first access to a page, the VM system registers the
page with Tapeworm using a tw_register_page() call. After
the page is marked valid by the VM system,
tw_register_page() sets traps on all memory locations in
the page so that any future references to parts of the page will
invoke the Tapeworm cache miss handler.2 A parallel routine,
called tw_remove_page(), is used by the VM system to
remove pages from the Tapeworm domain when they are
unmapped due to task termination or paging to secondary storage.
tw_remove_page() clears all traps on the page and flushes it
from the simulated cache. This mimics the same action performed
by the VM system on the host machine’s real cache.

If the VM system maps more than one virtual page to a given
physical page, it must still register the mapping with Tapeworm
by using tw_register_page(). In this situation, Tapeworm
increments a reference count for that physical page, but does not
set any new memory traps. This enables a new task to benefit from
shared entries brought into the cache by another task, as would
happen in a real system. Similarly, tw_remove_page() decre-
ments the reference count, and only flushes the page from the sim-
ulated cache when the reference count reaches zero.

A minor modification to the tw_register_page()
and tw_remove_page() primitives enables Tapeworm to sup-
port a form of cache set sampling to further enhance its speed.
When implemented in a trace-driven simulator, set sampling uses
a filtered trace containing exactly the addresses that map to a cer-
tain subset of cache sets [Kessler91, Puzak85]. The misses on
these locations are used to form estimators for the total number of
cache misses. Because less trace is used, set sampling can reduce
trace-driven simulation times, but there is pre-processing over-
head to construct a trace sample. Rather than filter addresses in
software to obtain a sample, Tapeworm exploits its trapping
framework to make the host hardware perform this function at a
much lower cost. This is accomplished by modifying
tw_register_page() to only set traps on memory locations
that map to specific cache sets for a given sample. Memory loca-

1. Our implementation of Tapeworm on a DECstation 5000/200 makes
use of a single-error correcting, double-error detecting ECC code. A
trap is set by flipping a specific ECC check bit among the 7 total check
bits assigned to each 32 bits of data. If Tapeworm detects a single-bit
error in any of the other 38 check or data bit positions, or if it detects a
double-bit error, it knows that a true error has occurred.

2. In the case of TLB simulation, where a page valid bits may be used by
Tapeworm to set traps, an extra bit is maintained in software to indi-
cate the true state of the page (resident in physical memory or not).

tions that are not part of the sample never cause miss traps and are
effectively filtered from the simulation with no overhead. The
result is that Tapeworm slowdowns decrease in direct proportion
to the degree of sampling. An additional benefit of this method is
that different samples can be obtained simply by changing the pat-
tern of traps on registered Tapeworm pages. With trace-driven
simulation, the full trace must be re-processed to obtain a new set
sample.

Tapeworm supports cache simulation for workloads consisting
of multiple tasks. To control which tasks are included in a given
simulation, each is assigned two Tapeworm attributes (simulate
and inherit) which are stored in an extended version of the OS
task data structure. Attributes are set by calling
tw_attributes() with a task identifier specifying which task
to assign the new attributes to. A zero task identifier is used to
indicate the OS kernel itself.

If simulate is zero (the default value), then the task runs in
the system without any intervention from Tapeworm. If non-zero,
simulate indicates that all current and future pages touched by
the task must be registered with Tapeworm via
a tw_register_page() call. A second attribute, inherit,
defines the initial value of simulate for any children of the task.
In other words, after a task fork, a child task inherits the Tape-
worm attributes of its parent as follows:

child.simulate <-- parent.inherit
child.inherit <-- parent.inherit

Different settings of the (simulate, inherit) pair are useful
for common simulation situations. For example, if the attribute
pair (simulate=0, inherit=1) is set on a shell task, then any
workload that is started from this shell, and all of the workload’s
children will be registered with Tapeworm. The shell task itself,
however, is excluded from the simulation. This inheritance mech-
anism greatly simplifies the simulation of workloads with com-
plex task fork trees, such as sdet, kenbus, or a multi-stage
optimizing compiler (see Table 4). Another common attribute
pair, (simulate=1, inherit=0) is used when only the task
itself, but not its children, are to be simulated. This combination is
useful for registering kernel pages with Tapeworm.

The final primitive of Table 1, tw_replace(), is a direct
analogue to the replacement routine of a trace-driven simulator. It
maintains a data structure representing a simulated cache by
inserting new entries and selecting others to be displaced accord-
ing to some pre-defined simulation parameters. Because it is
implemented entirely in software, simulation configurations are
not restricted in any way by the TLB or cache structure of the
underlying host hardware. For example, simulated caches may be
either smaller or larger in size than the caches of the underlying
host machine. A larger simulated cache simply sets fewer traps on
a workload’s memory locations. Similar adjustments can be used
by tw_replace() to simulate different line sizes and associa-
tivities, as well as more complex cache structures including split,
unified or multi-level caches. Additionally, because
tw_replace() has access to the actual virtual-to-physical page
mappings established by the VM system, it can simulate either
virtual or physical cache indexing.

3.3 Design Summary

Because Tapeworm has kernel privileges and works in close
cooperation with the VM system, it can include pages from any
task, as well as the kernel itself. The inheritance of Tapeworm
attributes during a task fork greatly simplifies the problem of cap-
turing all activity from a complex multi-task workload. By allow-
ing different combinations of tasks to have their cache effects
simulated or not, Tapeworm attributes enable experiments that

5

measure and isolate task interference effects. Finally, by fully
optimizing the common case of cache hits and through its use of
set sampling, Tapeworm is very fast.

4 Tapeworm Implementation and
Experiences

We have implemented Tapeworm for TLB and instruction
cache simulation in the Mach 3.0 operating system kernel running
on a MIPS R3000-based DECstation 5000/200. The hardware
mechanisms we selected to set and clear traps are page valid bits
and ECC check bits. In this section, we use this implementation to
study the effectiveness of the Tapeworm design in meeting our
three main goals of simulation completeness, speed and portabil-
ity. We also discuss difficulties encountered during the implemen-
tation, and suggest inexpensive hardware support that could
increase Tapeworm’s flexibility and further enhance its speed.

To validate the accuracy of Tapeworm results and to assist in
the computation of metrics such as miss ratios, we use a hardware
monitoring system, called Monster, based on a DAS 9200 logic
analyzer [Nagle92]. This system allows us to unobtrusively count
total instructions and stall cycles. For comparison with trace-
driven simulation, we use the Cache2000 memory simulator
[MIPS88] driven by Pixie-generated traces [Smith91]. Note that
Pixie only generates user-level address traces for a single task.
The widespread use of Pixie makes it representative of trace-
driven simulation environments.

Table 3 and Table 4 summarize the workloads used in this
study. With the exception of the SPEC92 benchmarks xlisp,
espresso and eqntott, the common characteristic of each of
these workloads is that they consist of multiple tasks and/or spend
a significant fraction of their time executing OS services.

4.1 Speed

The original implementation of the Tapeworm miss handler
was written entirely in C and required over 2,000 cycles to exe-
cute. This is similar to cycle counts of 2,500 for a similar opera-
tion in the Wisconsin Wind Tunnel Simulator [Lebeck94]. We
optimized the handler by re-writing it entirely in assembly code
and by bypassing the usual kernel entry and exit code. The new

code requires no execution stack and saves a minimal number of
registers.

With careful coding, the final optimized handler requires only
250 cycles to handle simulated misses in direct-mapped caches
with 4-word line sizes (see Table 5 for the components of this
time). Higher degrees of associativity slightly increase the time in
tw_replace(), while longer cache lines increase the cost of
tw_set_trap() and tw_clear_trap(). Simulating differ-
ent cache sizes has little effect on these times. Although the 250
cycle cost of a kernel trap is greater than the average cost to gen-

Table 3: Workload Summary

Benchmarks were compiled with the Ultrix MIPS C compiler version
2.1 (level 2 optimization).

Workload Description

xlisp Lisp interpreter written in C. Configured to solve
the 8-queens problem. A SPEC92 benchmark.

espresso Boolean function minimization. A SPEC92
benchmark.

eqntott Translates logical representation of boolean
equation to a truth table. A SPEC92 benchmark.

mpeg_play mpeg_play V2.0 from the Berkeley Plateau
Research Group. Displays 610 frames from a
compressed video file [Patel92].

jpeg_play The xloadimage program written by Jim Frost.
Displays four JPEG images.

ousterhout John Ousterhout’s benchmark suite from [Oust-
erhout89].

sdet A multiprocess, system performance bench-
mark which includes programs that test CPU
performance, OS performance and I/O perfor-
mance. From the SPEC SDM benchmark suite.

kenbus Simulates user activity in a research-oriented,
software development environment. From the
SPEC SDM benchmark suite.

Table 4: Workload and Operating System Summary

The Monster monitoring system was used to obtain instruction counts and the fraction of time spent in different tasks. All experiments were performed on a
Mach 3.0 kernel (version mk77) with a user-level BSD UNIX server (version uk38) and the DECstation X display server (version 7, release 5). Run Time is the
total elapsed time in seconds. User Task Count is the total number of tasks created (not including the X or BSD server) during the execution of the workload.

Workload

Instr

(106)

Run Time

(secs) Kernel

BSD

Server

X

Server

User

Tasks

User Task

Count

xlisp 1,412 67.52 7.3% 7.1% 0.0% 85.6% 1

espresso 534 26.80 2.9% 1.9% 0.0% 95.1% 1

eqntott 1,306 60.98 1.5% 1.2% 0.0% 97.2% 1

mpeg_play 1,423 95.53 24.1% 27.3% 4.0% 44.6% 1

jpeg_play 1,793 89.70 9.1% 9.4% 2.6% 78.8% 1

ousterhout 567 37.89 48.0% 31.4% 0.0% 20.6% 15

sdet 823 43.70 43.7% 35.5% 0.0% 20.8% 281

kenbus 176 23.13 48.9% 29.1% 0.0% 22.0% 238

6

erate and process a trace address (about 40 to 60 cycles per
address for Cache2000 and Pixie), Tapeworm traps only occur on
misses, while a trace-driven simulator must consider all addresses
whether they hit or miss. This suggests a rough break-even ratio
of 4 hits to 1 miss1 before Tapeworm becomes slower than

1. This break-even point is only an approximation. Because the amount
of processing differs for hits and misses, the average number of cycles
per address in Cache2000 varies, depending on the ratio of hits to
misses.

Table 5: Tapeworm Miss Handling Time

This table shows the total number of cycles required to handle a Tape-
worm cache miss, along with the components of the handler in num-
bers of instructions. These times are for simulation of direct-mapped
caches with 4-word line sizes. For comparison, we also show the aver-
age number of cycles per address (hit or miss) for a Cache2000 simu-
lation. Note that this average includes the time to generate addresses
on-the-fly by a Pixie-annotated workload.

Routine Name Instructions

kernel trap and return 53

tw_cache_miss() 23

tw_replace() 20

tw_set_trap() 35

tw_clear_trap() 6

Cycles per miss in Tapeworm 246

Cycles per address in Cache2000 53

Cache2000 (see bottom of Table 5). Because only the most poorly
performing caches exhibit miss ratios of 0.20 or higher, Tape-
worm typically outperforms trace-driven simulation by
Cache2000. Moreover, in contrast to trace-driven simulation,
Tapeworm works better the larger the cache (and thus the smaller
the miss ratio).

The best measure of overall simulation speed is the actual
wall-clock time required to perform a simulation. We are inter-
ested in comparisons with other on-the-fly simulation techniques
able to measure lengthy computations. We therefore define Slow-
down as the ratio of simulation and trap (or trace generation) over-
head to the run time of an uninstrumented workload:

Overhead is the time added to a workload run either by Tape-
worm or Pixie and Cache2000. Normal Workload Run Time is for
an unmodified run on the host machine, a DECstation 5000/200.

Figure 2 shows how Tapeworm slowdowns vary with cache
size for the mpeg_play workload in comparison with
Cache2000. With both simulators, slowdowns decrease as cache
size increases, but for different reasons. Tapeworm slowdowns
decrease to nearly zero with larger caches because the number of
traps to the Tapeworm miss handler approaches zero. Cache2000
slowdowns decrease because slightly less manipulation of its data
structures is required for hits (search only) than for misses (search
and replace). However, Cache2000 slowdowns never fall below
about 20, even for the largest caches. For the smallest size cache

Figure 2: Comparison of Trace-driven and Tapeworm Slowdowns

Tapeworm slowdowns compared with a Cache2000 simulation driven by Pixie-generated instruction address traces. The simulation is of
mpeg_play for different sizes of direct-mapped instruction caches with 4-word lines (4 bytes/word). Because the Pixie/Cache2000 combi-
nation can only measure a single-task workload, Tapeworm attributes were set to measure activity only from the mpeg_play task and to
exclude X display server, BSD UNIX server and kernel references. However, slowdowns in both cases were computed using the total
wall-clock run time for the workload which includes time in the X and BSD servers.

Cache
Size

Miss
Ratio

Cache 2000
Slowdowns

Tapeworm
Slowdowns

1K 0.118 30.2 6.27

2K 0.097 28.8 5.16

4K 0.064 27.0 3.84

8K 0.023 24.2 1.20

16K 0.017 23.5 0.87

32K 0.002 22.4 0.11

64K 0.002 22.3 0.10

128K 0.000 22.0 0.01

256K 0.000 22.1 0.00

512K 0.000 22.1 0.00

1024K 0.000 22.3 0.00

E
E

E

E
E

E E E E E E

Ç
Ç

Ç

Ç Ç
Ç Ç Ç Ç Ç Ç

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

0

5

10

15

20

25

30

35

S
lo

w
 D

ow
n

Cache Size (KBytes)

E cache2000

Ç Tapeworm

Slowdown
Tapeworm Overhead

Normal Workload Run Time
=

Slowdown
Pixie Cache2000 Overhead+

Normal Workload Run Time
=

7

(1 K-byte with a miss ratio of 0.118), Tapeworm still out-performs
Cache2000 by a factor of about 3.

Although simulations of caches with higher associativities and
larger cache lines increase Tapeworm miss handling time slightly,
these structures typically experience fewer misses overall, and
thus actually lead to faster simulation. Figure 3 shows Tapeworm
slowdowns over a broader range of cache configurations.

All slowdowns reported thus far are for simulations without
any sampling. Figure 3 illustrates the speed benefits of set sam-
pling. We give results only for the smallest cache sizes, noting that
Tapeworm slowdowns for larger caches are sufficiently small to
avoid the need for sampling altogether. Notice that slowdowns
decrease in direct proportion to the fraction of sets sampled. How-
ever, sampling does increase measurement variance. We examine
this effect, in addition to other sources of variation in performance
measurements in the next section.

4.2 Completeness and Accuracy

In this section, we examine issues of simulation accuracy. We
begin by illustrating the importance of including multi-task and
kernel references by comparing the relative contributions of dif-
ferent workload components (user, server or kernel)1 to overall I-
cache miss counts. By isolating the components in this way, we
are also able to partially validate our results by comparing the user
component of single-user-task workloads with Pixie-driven

Figure 3: Tapeworm Slowdowns for Different
Simulation Configurations

The figures at the left show Tapeworm slowdowns for caches with varying
degrees of associativity and line sizes. The figure at the top shows the
benefits of set sampling in terms of reduced slowdowns for increasing
degrees of sampling. The notation 1/2 means that half of the cache sets
were sampled. As in Figure 2, the workload is mpeg_play.

G

G

G

G

G

G G G G

E

E

E

E
E

E E E E

Ç

Ç

Ç
Ç

Ç Ç Ç Ç Ç

1 2 4 8 16 32 64 128 256

0

1

2

3

4

5

6

7

S
lo

w
do

w
n

Cache Size (KBytes)

G 4 word

E 8 word

Ç 16 word

G

G

G

G

G

G G G G

E

E

E

E E E E E E

Ç

Ç

Ç Ç Ç Ç Ç Ç Ç

I

I I I I I I I I

1 2 4 8 16 32 64 128 256

0

1

2

3

4

5

6

7

S
lo

w
do

w
n

Cache Size (KBytes)

G 1-way

E 2-way

Ç 4-way

I 8-way

G

G

G

G

G

E

E

E
E

E

Ç
Ç

Ç
Ç

Ç
Å Å Å Å ÅI I I I I

1 2 4 8 16

0

1

2

3

4

5

6

7

S
lo

w
do

w
n

Cache Size (KBytes)

G "1/1"

E "1/2"

Ç "1/4"

Å "1/8"

I "1/16"

Sampling

Cache2000 simulations. Next, we study problems of measurement
variation due both to OS effects and set sampling, by using vari-
ous Tapeworm features to isolate, measure and effectively remove
the individual contributions of these effects to overall measure-
ment variance. Finally, we conclude with some comments on
measurement bias due to Tapeworm’s presence in a running sys-
tem.

Miss Contributions of Workload Components

Table 6 shows typical I-cache miss counts and miss ratios for
each of our workloads in a 4 K-byte cache. The table shows the
number of misses from the kernel, the BSD and X servers, and the
user tasks themselves when each is allowed to run in a dedicated
cache.2 The All Activity column gives results when each of these
workload components share a single cache. Due to cache interfer-

1. By user task, we mean any of several tasks that are children of the shell
from which the workload was initiated. We lump all of these tasks
together in our simulations by using the Tapeworm inheritance
attribute. A server task is the X display server or the BSD server which
exist prior to the initiation of a workload. We refer to the server tasks
and the kernel as the system components of the workload.

2. The cache is shared by multiple user tasks in the case of kenbus,
sdet and ousterhout.

8

ence among the individual workload components, the sum of the
individual miss columns is less than the All Activity column.

Note, first, that the SPEC92 benchmarks eqntott and
espresso exhibit very low miss counts overall. This is consis-
tent with previous observations that many of the SPEC92 bench-
marks require only small I-caches to run well [Gee93]. The
servers and kernel contribute the majority of total misses, but even
with their contribution, the total number of misses is negligible.
Other workloads, such as mpeg_play, jpeg_play, sdet and
ousterhout exhibit the same predominance of server and kernel
misses, but with much higher overall miss ratios.
In ousterhout, for example, the total miss ratio is over 10%,
mostly due to the system components and interference effects. A
simulator that only considers the user-task component
of ousterhout would incorrectly estimate the I-cache miss
ratio to be less than 1%. The only workload in our suite with a
greater fraction of misses coming from a user task is xlisp
which, incidentally, performs much better in a cache only slightly
larger.

Table 6: Miss Count and Miss Ratio Contributions for Different Workload Components

This table gives the number of misses (in millions) and the miss ratios (in parentheses) for different workload components. The data were collected by run-
ning separate trials in which each workload was run in a dedicated direct-mapped cache of 4 K-bytes, with a 4-word line. Whenever possible (e.g., for the
single-task workloads), From Traces gives the miss ratios predicted by a trace-driven simulation using Pixie+Cache2000. All Activity gives total miss counts
when all workload components share the same cache. Note that because of cache interference effects, the values in this column are greater than the sum
of the individual components. This difference is shown in the last column, entitled Interference.

All miss ratios are relative to the total number of instructions in the workload, not just the instructions in a given workload component. Hence, the miss ratios
from each individual component, plus interference, all sum to the total miss ratio given under All Activity.

Workload From Traces User Tasks Servers Kernel All Activity Interference

eqntott 0.06 (0.000) 0.07 (0.000) 2.52 (0.002) 2.44 (0.002) 8.44 (0.007) 3.41 (0.003)

espresso 1.60 (0.003) 1.80 (0.003) 2.28 (0.004) 1.96 (0.004) 9.53 (0.018) 3.49 (0.007)

jpeg_play 2.98 (0.002) 3.14 (0.002) 14.58 (0.008) 9.21 (0.005) 36.28 (0.020) 9.35 (0.005)

kenbus _______ 7.50 (0.043) 11.89 (0.068) 12.78 (0.073) 45.70 (0.260) 13.53 (0.077)

mpeg_play 37.63 (0.027) 37.91 (0.027) 33.92 (0.024) 19.27 (0.014) 112.5 (0.079) 21.39 (0.015)

ousterhout _______ 1.93 (0.003) 18.62 (0.033) 21.72 (0.038) 61.39 (0.108) 19.12 (0.034)

sdet _______ 20.14 (0.024) 25.18 (0.031) 18.09 (0.022) 104.6 (0.127) 41.25 (0.050)

xlisp 85.77 (0.061) 90.02 (0.064) 6.31 (0.004) 2.98 (0.002) 135.8 (0.096) 36.55 (0.026)

As noted above, we compared Tapeworm miss counts from the
user task components of each workload with Pixie-driven
Cache2000 simulations for the purposes of validation. Wherever a
comparison was possible (i.e., with the single-user-task work-
loads), the Tapeworm miss counts for the user portion of the
workload were nearly identical to those reported by Cache2000.
As we shall see in the next sections, measurement variation and
bias makes validating Tapeworm results for the other workload
components (e.g., the servers and kernel) is an inherently more
difficult problem.

Sources of Measurement Variation

With trace-driven simulations, the same trace from a given
workload is typically used repeatedly to obtain performance mea-
surements for different memory configurations. As a result, trace-
driven simulations exhibit no variance if the simulation for a
given memory configuration is repeated. However, the precise
sequence of traps that drive a Tapeworm simulation are impossi-

Table 7: Variation in Measured Memory System Performance

These measurements include 16 trials apiece, were taken using 1/8 set sampling and consider all activity including the kernel and servers. The simulations are
of 16 K-byte, 4-word line, direct-mapped, physically-indexed caches. x is the mean number of misses, and s is the standard deviation of the trial set. Numbers
in parenthesis are the percent of the mean value for s and Range, and the percent difference from the mean value for Minimum and Maximum.

Workload

Misses (x)

(x 106)

s

(x 106)

Minimum

(x 106)

Maximum

(x 106)

Range

(x 106)

eqntott 4.42 2.53 (57%) 3.25 (26%) 13.13 (197%) 9.88 (223%)

espresso 4.91 2.93 (60%) 3.45 (30%) 13.72 (180%) 10.28 (209%)

jpeg_play 18.58 1.34 (7%) 16.26 (13%) 21.96 (18%) 5.71 (31%)

kenbus 20.89 5.30 (25%) 17.10 (18%) 36.37 (74%) 19.27 (92%)

mpeg_play 58.48 7.01 (12%) 47.34 (19%) 68.95 (18%) 21.61 (37%)

ousterhout 31.50 2.61 (8%) 27.09 (14%) 35.03 (11%) 7.94 (25%)

sdet 41.28 8.77 (21%) 32.58 (21%) 63.48 (54%) 30.90 (75%)

xlisp 41.55 31.78 (76%) 15.16 (64%) 104.48 (151%) 89.32 (215%)

9

Table 8: Variation due to Set Sampling

This table isolates the degree to which set sampling can vary cache performance measurements. Tapeworm removed all other sources of variation by
considering only activity from the espresso process (no kernel or servers) and by simulating virtually-indexed caches (4-word line, direct-mapped). The
two sets of data points are for measurements with and without sampling and consist of 16 trials each. The error bars on the plot represent one standard
deviation.

Size

(KBytes)

Misses (x)

(x 106)

s

(x 106)

With Sampling

4 1.72 0.13 (8%)

8 0.89 0.09 (10%)

16 0.38 0.02 (6%)

32 0.13 0.01 (11%)

64 0.02 0.00 (3%)

128 0.02 0.00 (5%)

Without Sampling

4 1.80 0.00 (0%)

8 0.93 0.00 (0%)

16 0.41 0.00 (0%)

32 0.14 0.00 (0%)

64 0.03 0.00 (0%)

128 0.02 0.00 (1%)

Table 9: Variation Due to Page Allocation

This table shows how page allocation alone can vary cache performance. Tapeworm removed all other sources of variation by considering only activity
from the mpeg_play process (no kernel or servers), and by not sampling. The two sets of data points are for a physically- and virtually-indexed cache
(4-word line, direct-mapped). Each data point is the average of 4 trials. The error bars on the plot represent one standard deviation.

Size

(KBytes)

Misses (x)

(x 106)

s

(x 106)

Physically Indexed

4 37.81 0.09 (0%)

8 22.38 5.89 (26%)

16 12.07 4.84 (40%)

32 9.01 5.62 (62%)

64 5.83 5.96 (10%)

128 2.92 4.60 (15%)

Virtually Indexed

4 37.75 0.00 (0%)

8 14.03 0.00 (0%)

16 10.20 0.00 (0%)

32 1.90 0.00 (0%)

64 1.38 0.00 (0%)

128 0.28 0.00 (1%)

n

n

n

n

n

n

o

o

o

o

o

o

E

E

E

E

E

E

Ç

Ç

Ç

Ç
Ç

Ç

4 8 16 32 64 128

0

5

10

15

20

25

30

35

40

A
ve

ra
ge

 N
um

be
r

of
 M

is
se

s
(1

0^
6)

Cache Size (KBytes)

E

Physically-
Addressed
Cache

Ç

Virtually -
Addressed
Cache

n

n

n

n

n n

o

o

o

o

o o

E

E

E

E

E E

Ç

Ç

Ç

Ç

Ç Ç

4 8 16 32 64 128

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

A
ve

ra
ge

 N
um

be
r

of
 M

is
se

s
(1

0^
6)

Cache Size (KBytes)

E Sampling

Ç W/out Sampling

10

ble to reproduce from run to run because of dynamic system
effects. For example, the distributions of physical page frames
allocated to a task, which change from run to run, affect the
sequence of addresses seen by a physically-indexed cache
[Kessler92, Sites88]. This, in turn, causes variation in cache miss
ratios. Another source of measured performance variance is
caused by Tapeworm itself when it employs set sampling.

The results in Table 7 measure the extent of these effects on
our workload suite by reporting statistics from multiple experi-
mental trials. These measurements are for simulations of a 16 K-
byte, physically-indexed cache using 1/8th sampling of the cache
sets. Note that the standard deviations of the different measure-
ment trials are rather large, ranging from about 10% to as high as
70% of the mean values. In some cases, minimum and maximum
values differ from the mean by as much as a factor of two.

To isolate the measurement variation caused by set sampling,
we removed page-allocation effects by simulating a virtually-
indexed, rather than a physically-indexed cache. New trials were
then performed with and without sampling. The results are shown
in Table 8 for an example with espresso. As expected, results
without sampling show zero variance over multiple trials of the
experiment. Notice that results without sampling consistently pre-
dict slightly higher miss counts than those with sampling. This
measurement bias, discussed more completely in the next section,
is due to an increased time dilation effect from the increased slow-
down of the non-sampled experiments.

Table 9 shows the degree that page allocation can vary cache
performance. We removed sampling variation and then simulated
the same workload (mpeg_play in this example) in both a physi-
cally-indexed and a virtually-indexed cache. The virtually-
indexed cache simulation exhibits zero variation because the
sequence of references to the cache is independent of the distribu-
tion of physical page frames assigned by the OS from run to run.
This is essentially the assumption made by most trace-driven
cache simulators. Notice that the 4 K-byte physically-indexed
cache simulation results do not vary. This is because the page size
on this machine is 4 K-bytes; any page allocation will appear the
same because all pages overlap in caches that are 4 K-bytes or
smaller.

With the physically-indexed cache, the greatest degree of vari-
ation (as a percent of the mean) appears at a cache size of 32 K-
bytes, which is roughly the size of program text used
by mpeg_play. Variation decreases for both larger and smaller
caches. This observation is consistent with a probabilistic model
of cache page conflicts published in [Kessler91]. Kessler’s model

predicts that with random page allocation, the probability of cache
conflicts peaks when the size of the cache roughly equals the
address space size of the workload, and decreases for larger and
smaller caches.

Finally, notice that variation due to page allocation is compara-
ble to, if not larger than, that of set sampling. This suggests that
the error introduced by sampling is a reasonable trade for
increased speed when simulating physically-indexed caches. Of
course, the combined effect of both sources of variance is greater
than either in isolation, forcing a larger number of trials to be per-
formed to increase the level of confidence in the mean value.

In addition to page allocation, we have observed other sources
of memory system performance variation due to OS effects. For
example, we have observed gradual (but substantial) increases in
TLB misses due to kernel and server memory fragmentation in a
long-running system. It is important to note that Tapeworm’s sen-
sitivity to these and other sources of performance variation, which
necessitate multiple experimental trials, is not a liability. Perfor-
mance variations due to page allocation and memory fragmenta-
tion are real system effects that should be considered. If necessary,
however, Tapeworm simulations can be configured to remove
these effects and produce measurements with less variation, like
those from traditional trace-driven simulators. An example of this
is shown in Table 10.

Sources of Measurement Bias

Tapeworm’s presence in the kernel during a workload’s opera-
tion raises questions of measurement bias. Although Tapeworm
carefully avoids setting traps on its own code and data so that it
never directly changes miss counts, there are indirect ways that
Tapeworm can alter results. First, about 256 K-bytes of physical
memory are allocated for Tapeworm at boot time. This removes
64 pages from the free memory pool, resulting in a possible
increase in paging activity. We minimize this problem by adding
enough additional physical memory so that paging is avoided
altogether.

A second source of error is cause by Tapeworm slowdowns
resulting in system time dilation, an effect that causes more clock
interrupts during the run of a workload, leading to increased cache
conflict misses. Figure 4 plots the magnitude of error induced by
time dilation. Notice that error grows most steeply from slow-
downs of 0 to 2, and then levels off for larger slowdowns. Most
Tapeworm slowdowns are under 4 where bias tends to be under
10%. Because the amount of slowdown varies from workload to

Table 10: Measurement Variation Removed

These measurement were made as in Table 7, but with variation due to sampling and page allocation removed. This was accomplished by configuring
Tapeworm for simulation of virtually-indexed caches without set sampling.

Workload

Misses (x)

(x 106)

s

(x 106)

Minimum

(x 106)

Maximum

(x 106)

Range

(x 106)

eqntott 4.19 0.10 (2%) 4.11 (2%) 4.26 (2%) 0.15 (4%)

espresso 4.26 0.06 (1%) 4.21 (1%) 4.30 (1%) 0.09 (2%)

jpeg_play 20.60 0.06 (0%) 20.56 (0%) 20.64 (0%) 0.08 (0%)

kenbus 22.03 0.05 (0%) 21.99 (0%) 22.06 (0%) 0.07 (0%)

mpeg_play 53.16 0.06 (0%) 53.12 (0%) 53.20 (0%) 0.08 (0%)

ousterhout 34.69 1.22 (4%) 33.83 (2%) 35.55 (2%) 1.72 (5%)

sdet 41.23 0.00 (0%) 41.22 (0%) 41.23 (0%) 0.00 (0%)

xlisp 21.67 0.19 (1%) 21.53 (1%) 21.80 (1%) 0.27 (1%)

11

workload, time dilation cannot be removed by a simple adjust-
ment to the clock interrupt frequency as is done in [Borg90,
Chen93b]. We are collecting time dilation curves for a larger set
of workloads to determine if their shape and magnitude are the
same as in Figure 4. If so, it should be possible to adjust simula-
tion results to factor away this form of systematic error.

A final source of bias is related to masking of certain Tape-
worm memory traps. In the DECstation 5000/200, single-bit ECC
errors raise a hardware interrupt line to cause a kernel trap. If
interrupts are disabled, a kernel trap cannot occur, resulting in a
reduction of cache misses seen by Tapeworm. Because only the
kernel runs with interrupts masked, this limitation only affects
kernel references. Further, only a very small fraction of kernel
code is affected, and special code around these regions helps
Tapeworm to take their cache effects into account.

4.3 Portability

To ease portability, Tapeworm has been carefully partitioned
into hardware-dependent and hardware-independent sections.
Further, only a minimal amount of code actually runs in the ker-
nel, controlled through a system call interface by a user-level X

Figure 4: Error Due to Time Dilation

Increases in cache misses due to time dilation were measured for the
mpeg_play workload including all system activity (kernel and servers),
running in a physically-addressed 4 K-byte, direct-mapped I-cache with
4-word lines. Time dilation was varied by changing the degree of sam-
pling.

Dilation

(slowdown)

Misses

(x 106)

Increase

%

0.43 90.56 0.0%

0.96 91.54 1.2%

2.08 95.70 5.7%

4.42 99.66 10.1%

9.29 103.57 14.4%

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10

%
 In

cr
ea

se

Dilation (slowdown)

application (see Table 11). The hardware-dependent code consists
primarily of modified kernel entry code and two routines,
tw_set_trap() and tw_clear_trap() that can, in principle,
be implemented on many machines (see Table 12). In practice,
unexpected interactions between components in a memory system
can hinder attempts to implement these primitives on some archi-
tectures. For example, our port of Tapeworm from a DECstation
5000/200 to a DECstation 5000/240 was hindered due to differ-
ences between the way that DMA is implemented on the two
machines.

Intentional hardware support for these primitives could help to
avoid these problems, and also reduce the time to set and clear
traps. In our implementation, these operations are performed by
issuing a convoluted sequence of control instructions to the mem-
ory-controller ASIC that implements the ECC logic. Piecing
together the memory address of an ECC error (i.e., the address of
a Tapeworm cache miss) also requires a dozen load, shift, add and
mask instructions for what could be supported by a single load.
We believe that a cleaner interface to the diagnostic functions of
the memory ASIC could reduce the total miss-handling time to
about 50 cycles, further increasing Tapeworm’s speed by another
factor of 5.1 Although more expensive, direct support in the form
of a trap bit for each memory location could further decrease the
cost of setting and clearing traps. Such support would be useful
for other applications, such as debuggers and distributed shared
memory [Appel91].

Despite these problems, ports of Tapeworm now run in the
OSF/1 and Mach 3.0 operating systems under DECstation 3100s,
DECstation 5000/200s, and 486-based Gateway PCs.

4.4 Flexibility

With respect to flexibility, Tapeworm has trouble simulating
memory structures that do not fit a cache model. For example,
write buffers, which are queues that only hold their contents for
only a short time, cannot be simulated with the Tapeworm algo-
rithm. This limitation restricts simulations to a write-back write
policy. Furthermore, unlike trace-driven simulation which can
easily and efficiently be extended to the simulation of other archi-
tectural structures, such as instruction pipelines, the trap-driven
approach seems to be limited to the simulation of memory system
hierarchies and their components.

Other problems of flexibility are not inherent to trap-driven
simulation, but are related to the specific limitations of the host
hardware. For example, on the DECstation 5000/200, ECC bits
are checked on 4-word cache line refills. This effectively limits
the simulation of Tapeworm cache line sizes to multiples of 4
words on this machine. Our attempts to implement data cache
simulation on this particular machine were hindered by its no-
allocate-on-write policy, which causes ECC traps to be cleared
without invoking the Tapeworm miss handlers. On machines that
use an allocate-on-write policy, data cache simulations are possi-
ble [Reinhardt93]. Finally, although the miss counts provided by

1. A similar operation performed by the miss handler of the R3000 soft-
ware-managed TLB requires only about 20 cycles.

Table 11: Tapeworm Code Distribution

Code Lines %

Machine-dependent Kernel Code 343 5%

Machine-independent Kernel Code 889 13%

Machine-independent User Code 5652 82%

12

Tapeworm are useful metrics in their own right, some studies
require other measures, such as miss ratios or misses per instruc-
tion (MPI). We obtain instruction counts using a logic analyzer,
but a much more convenient method would be an on-chip instruc-
tion counter. In each of these cases, intentional hardware support
for trap-driven simulation primitives could overcome these prob-
lems.

5 Summary and Future Work
The development of Tapeworm demonstrates that “on-the-fly”

cache and TLB simulation driven by kernel traps can greatly sim-
plify the problem of evaluating memory structures under work-
loads including multiple tasks and operating system loads.
Moreover, our measurements of Tapeworm's performance show
that these simulations can be performed with rather small degra-
dation in the overall system performance. This opens up important
new areas for consideration:

• Fast simulation creates the possibility of examining a
wider range of alternative configurations, and investigat-
ing the variability of results for repeated runs of the same
workload.

• Simulations can be driven by the memory references gen-
erated during an actual user’s session, because Tapeworm
slowdowns can be made imperceptible to the user. This
makes it possible to watch for interesting cases that can-
not be identified by traditional batch simulations.

• The use of continuous monitoring and simulation opens
up the possibility of using these results to perform real-
time hardware and software tuning.

Future generations of simulators and monitors driven by kernel
traps would benefit from better hardware support for generating
traps on both reads and writes to particular memory locations.
Better support will result in even faster and more flexible simula-
tions.

We are continuing to develop and add features to the Tape-
worm simulator. We are currently adding data-cache simulation
capabilities and are porting Tapeworm to other architectures,
including DEC Alpha-based workstations and SPARC-based
machines.

6 Acknowledgments
We thank Joel Emer and Bill Grundmann for essential infor-

mation on the DECstation 5000/200 and its memory-controller
ASIC. Thanks also go to Alessandro Forin for his help with Mach

Table 12: Privileged Operations on Modern Microprocessors

The entries in this table were taken from a variety of sources including data books, text books and Microprocessor Report [MReport92, MReport93]. A given
entry may not be true for every implementation of a given processor. Some features, such as memory-parity-error traps are actually system-implementation
dependent. For these features, an affirmative entry means that we found at least one system with the given microprocessor that implements the feature. A
blank entry means that insufficient data was available.

Privileged Operation MIPS
R3000

MIPS
R4000

SPARC
DEC

Alpha
Tera

Intel
i486

Intel
Pentium

AMD
29050

HP PA-
RISC

Power
PC

Memory Parity or ECC Traps Yes Yes Yes Yes Yes Yes

Instruction Breakpoint Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Data Breakpoint No No No No Yes No No No No No

Invalid Page Traps Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Variable Page Size No Yes No Yes No Yes Yes Yes Yes

Instruction Counters No No No Yes No Yes No No

3.0 and its trap handlers. Chih-Chieh Lee implemented the 486
Tapeworm port.

Bibliography

[Agarwal88] Agarwal, A., Hennessy, J. and Horowitz, M. Cache
performance of operating system and multiprogramming
workloads. ACM Transactions on Computer Systems 6 (Num-
ber 4): 393-431, 1988.

[Agarwal86] Agarwal, A., Sites, R. L. and Horowitz, M. ATUM:
A new technique for capturing address traces using micro-
code, In Proceedings of the 13th International Symposium on
Computer Architecture, Tokyo, Japan, IEEE, 119-127, 1986.

[Alexander85] Alexander, C. A., Keshlear, W. M. and Briggs, F.
Translation buffer performance in a UNIX environment. Com-
puter Architecture News 13 (5): 2-14, 1985.

[Anderson91] Anderson, T. E., Levy, H. M., Bershad, B. N., et al.
The interaction of architecture and operating system design,
In Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, Santa
Clara, California, ACM, 108-119, 1991.

[Appel91] Appel, A. and Li, K. Virtual memory primitives for
user programs, In The 4th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, Santa Clara, California, ACM, 96-107, 1991.

[Borg90] Borg, A., Kessler, R. E. and Wall, D. W. Generation and
analysis of very long address traces, In The 17th Annual Inter-
national Symposium on Computer Architecture, IEEE, 1990.

[Chen93b] Chen, B. Software methods for system address trac-
ing, In The 4th Workshop on Workstation Operating Systems,
Napa, California, 1993.

[Chen93a] Chen, B. and Bershad, B. The impact of operating sys-
tem structure on memory system performance, In Proc. 14th
Symposium on Operating System Principles, 1993.

[Clark83] Clark, D. Cache performance in the VAX-11/780. ACM
Transactions on Computer Systems 1 : 24-37, 1983.

[Cmelik94] Cmelik, B. and Keppel, D. Shade: A Fast Instruction-
Set Simulator for Execution Profiling, In SIGMETRICS,
Nashville, TN, ACM, 128-137, 1994.

[Cvetanovic94] Cvetanovic, Z. and Bhandarkar, D. Characteriza-
tion of Alpha AXP performance using TP and SPEC Work-
loads, In The 21st Annual International Symposium on
Computer Architecture, Chicago, Ill., IEEE, 1994.

13

[Eggers90] Eggers, S. J., Keppel, D. R., Koldinger, E. J., et al.
Techniques for efficient inline tracing on a shared-memory
multiprocessor, In SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems, ACM, 34-47, 1990.

[Flanagan92] Flanagan, K., Grimsrud, K., Archibald, J., et al.
BACH: BYU address collection hardware. Brigham Young
University. TR-A150-92.1. 1992.

[Gee93] Gee, J., Hill, M., Pnevmatikatos, D., et al. Cache Perfor-
mance of the SPEC92 Benchmark Suite. IEEE Micro
(August): 17-27, 1993.

[Holliday91] Holliday, M. A. Techniques for cache and memory
simulation using address reference traces. International jour-
nal in computer simulation 1 : 129-151, 1991.

[Hsu89] Hsu, P. Introduction to Shade. Sun Microsystems. 1989.

[Kessler91] Kessler, R. Analysis of multi-megabyte secondary
CPU cache memories. University of Wisconsin-Madison.
1991.

[Kessler92] Kessler, R. and Hill, M. Page placement algorithms
for large real-indexed caches. ACM Transaction on Computer
Systems 10 (4): 338-359, 1992.

[Larus90] Larus, J. R. Abstract Execution: A technique for effi-
ciently tracing programs. University of Wisconsin-Madison.
1990.

[Larus93] Larus, J. R. Efficient program tracing. IEEE Computer
May, 1993 : 52-60, 1993.

[Lebeck94] Lebeck, A. and Wood, D. Fast-Cache: A new
abstraction for memory system simulation. The University of
Wisconsin - Madison. Technical Report Number 1211. 1994.

[Magnusson93] Magnusson, P. S. A design for efficient simula-
tion of a multiprocessor, In MASCOTS '93 - Proceedings of
the 1993 Western Simulation Multiconference on International
Workshop on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, La Jolla, California, 1993.

[Martonosi92] Martonosi, M., Gupta, A. and Anderson, T. Mem-
Spy: Analyzing memory system bottlenecks in programs, In
SIGMETRICS Conference on the Measurement and Modeling
of Computer Systems, ACM, 1992.

[Martonosi93] Martonosi, M., Gupta, A. and Anderson, T. Effec-
tiveness of trace sampling for performance debugging tools, In
SIGMETRICS, Santa Clara, California, ACM, 248-259, 1993.

[Mattson70] Mattson, R. L., Gecsei, J., Slutz, D. R., et al. Evalu-
ation Techniques for Storage Hierarchies. IBM Systems Jour-
nal 9 (2): 78-117, 1970.

[MReport92] Report, M. Sebastopol, CA, MicroDesign
Resources, 1992.

[MReport93] Report, M. Sebastopol, CA, MicroDesign
Resources, 1993.

[MIPS88] MIPS. RISCompiler Languages Programmer's Guide.
MIPS, 1988.

[Mogul91] Mogul, J. C. and Borg, A. The effect of context
switches on cache performance, In Fourth International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, Santa Clara, California, ACM, 75-84,
1991.

[Nagle92] Nagle, D., Uhlig, R. and Mudge, T. Monster: A Tool for
Analyzing the Interaction Between Operating Systems and
Computer Architectures. The University of Michigan. CSE-
TR-147-92. 1992.

[Nagle93] Nagle, D., Uhlig, R., Stanley, T., S. Sechrest, T.
Mudge, R. Brown, Design tradeoffs for software-managed
TLBs, In The 20th Annual International Symposium on Com-
puter Architecture, San Diego, California, IEEE, 27-38, 1993.

[Nagle94] Nagle, D., Uhlig, R., Mudge, T., et al. Optimal Alloca-
tion of On-chip Memory for Multiple-API Operating Systems,
In The 21st International Symposium on Computer Architec-
ture, Chicago, IL, 1994.

[Ousterhout89] Ousterhout, J. Why aren't operating systems get-
ting faster as fast as hardware. WRL Technical Note (TN-11):
1989.

[Patel92] Patel, K., Smith, B. C. and Rowe, L. A. Performance of
a Software MPEG Video Decoder. University of California,
Berkeley. 1992.

[Puzak85] Puzak, T. Cache-memory design. University of Massa-
chusetts. 1985.

[Reinhardt93] Reinhardt, S., Hill, M., Larus, J., et al. The Wis-
consin Wind Tunnel: Virtual Prototyping of Parallel Comput-
ers, In SIGMETRICS 93 (Special Issue of Performance
Evaluation Review), Santa Clara, CA, ACM, 48-60, 1993.

[Sites88] Sites, R. L. and Agarwal, A. Multiprocessor cache anal-
ysis with ATUM, In The 15th Annual International Symposium
on Computer Architecture, Honolulu, Hawaii, IEEE, 186-195,
1988.

[Smith82] Smith, A. J. Cache Memories. Computing Surveys 14
(3): 473-530, 1982.

[Smith91] Smith, M. D. Tracing with pixie. Stanford University,
Stanford, CA. 1991.

[SPEC91] SPEC. The SPEC Benchmark Suite. SPEC Newsletter.
3: 3-4, 1991.

[Sugumar93] Sugumar, R. Multi-configuration simulation algo-
rithms for the evaluation of computer designs. University of
Michigan. 1993.

[Talluri94] Talluri, M. and Hill, M. Surpassing the TLB Perfor-
mance of Superpages with Less Operating System Support, In
ASPLOS-VI, San Jose, CA, ACM, In this proceedings, 1994.

[Thompson89] Thompson, J. and Smith, A. Efficient (stack) algo-
rithms for analysis of write-back and sector memories. ACM
Transactions on Computer Systems 7 (1): 78-116, 1989.

[Torrellas92] Torrellas, J., Gupta, A. and Hennessy, J. Character-
izing the caching and synchronization performance of multi-
processor operating system, In Fifth International Conference
on Architectural Support for Programming Languages and
Operating Systems, Boston, Massachusetts, ADM, 162-174,
1992.

[Uhlig94a] Uhlig, R., Nagle, D., Mudge, T., Sechrest, S., Kernel-
based Memory Simulation (Extended Abstract), In SIGMET-
RICS, Nashville, TN, University of Michigan, 286-287, 1994.

[Uhlig94b] Uhlig, R., Nagle, D., Stanley, T., S. Sechrest, T.
Mudge, R. Brown, Design tradeoffs for software-managed
TLBs. ACM Transactions on Computer Systems. To appear in
Fall, 1994.

