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An increasing number of architectures provide virtual memory support through software-

managed TLBs. However, software management can impose considerable penalties that are

highly dependent on the operating system’s structure and its use of virtual memory. This work

explores software-managed TLB design tradeoffs and their interaction with a range of monolithic

and microkernel operating systems. Through hardware monitoring and simulation, we explore

TLB performance for benchmarks running on a MIPS R2000-based workstation running Ultrix,

OSF\l, and three versions of Mach 3.0.
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1. INTRODUCTION

Many computers support virtual memory by providing hardware-managed

translation lookaside buffers (TLBs’). However, beginning with the ZS-1 in

1988 [Smith et al. 1988], an increasing number of computer architectures,

including the AMD 29050 [Advanced Micro Devices 19911, the HP-PA
[Hewlett-Packard 1990], and the MIPS RISC [Kane and Heinrich 19921, have

shifted TLB management responsibility into the operating system. These

software-managed TLBs simplify hardware design and provide greater flexi-
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bility in page table structure, but typically have slower refill times than

hardware-managed TLBs [DeMoney et al. 1986].

At the same time, operating systems such as Mach 3.0 [Accetta et al. 1986]

are moving functionality into user processes and making greater use of

virtual memory for mapping kernel data structures held within the kernel.

These and related operating system trends can increase TLB miss rates and,

hence, decrease overall system performance.

This article is a case study, exploring the impact of TLBs on the perfor-

mance of application and operating system code running on a MIPS R2000-

based workstation. In particular, we examine the differences in performance

seen when running the same applications under different operating systems,

showing how these performance differences reflect the construction of the

operating system code. Through simulation, we explore alternative TLB

configurations. The results illustrate the design tradeoffs for a particular

software-managed TLB in conjunction with particular operating system im-

plementations. As a case study, this work seeks to illuminate the broader

problems of interaction between operating system software and architectural

features.

This work is based on measurement and simulation of running systems. To

examine issues that cannot be adequately modeled with simulation, we have

developed a system analysis tool called Monster, which enables us to monitor

running machines. We have also developed a novel TLB simulator called

Tapeworm, which is compiled directly into the operating system so that it can

intercept all TLB misses caused by both user process and OS kernel memory

references. The information that Tapeworm extracts from the running system

is used to obtain TLB miss counts and to simulate different TLB configura-

tions.

The remainder of this article is organized as follows: Section 2 examines

previous TLB and OS research related to this work. Section 3 describes our

analysis tools, Monster and Tapeworm. The MIPS R2000 TLB structure and

its performance under Ultrix, OSF/ 1, and Mach 3.0 are explored in Section 4.

Hardware- and software-based performance improvements are presented in

Section 5. Section 6 summarizes our conclusions.

2. RELATED WORK

By caching page table entries, TLBs greatly speed up virtual-to-physical

address translations. However, memory references that require mappings not

in the TLB result in misses that must be serviced either by hardware or by
software. Clark and Emer [ 1985] examined the cost of hardware TLB man-

agement by monitoring a VAX- I 1/780. For their workloads, 5 to 8% of a user

program’s run-time was spent handling TLB misses.

More recent papers have investigated the TLB’s impact on user program

performance. Using traces generated from the SPEC benchmarks, Chen,

et al. [ 1992] showed that, for a reasonable range of page sizes, the amount of

the address space that could be mapped was more important in determining

the TLB miss rate than was the specific choice of page size. Talluri et al.
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[1992] showed that while older TLBs (such as that in the VAX 11/780)

mapped large regions of physical memory, TLBs in newer architectures,

including MIPS RISC, do not. They showed also that increasing the page size

from 4 to 32 Kbytes could significantly decrease the TLB’s contribution to

CPI.

Operating system references also have a strong impact on TLB miss rates.

Clark and Emer [1985] showed that although only 18% of all memory

references in the system they examined were made by the operating system,

these references were responsible for 70% of the TLB misses. Several recent

papers [Anderson et al. 1991; Ousterhout 1989; Welch 1991] have noted that

changes in the structure of operating systems are altering the utilization of

the TLB. For example, Anderson et al. compared an old-style monolithic

implementation of an operating system (Mach 2.5) and a newer microkernel

implementation of that operating system (Mach 3.0) on a MIPS R3000-based

machine, which requires software management of TLBs. Anderson et al.

found a 600% increase in the incidence of the most expensive category of TLB

misses. Moreover, the handling of these expensive misses was far and away

the most frequently invoked system primitive for the Mach 3.0 kernel.

This article differs from previous work through its focus on software-

managed TLBs and its examination of the impact of changing operating

system technology on TLB design. We trace the specific sources of perfor-

mance difficulties and the options for eliminating them. The design tradeoffs

for software-managed TLBs can be complex, when, as in the systems exam-

ined here, there is significant variance in the refill penalty. While hardware-

managed TLBs have relatively small refill penalties, with low variance, our

measurements show that the cost of handling a single TLB miss on a

DECstation 3100 running Mach 3.0 can vary from 20 to more than 400 cycles.

The different service times reflect the varying lengths of the code paths that

handle different types of misses. The particular mix of TLB miss types is

highly dependent on the construction of the operating system. We, therefore,

focus on the operating system in our analysis and discussion.

3. ANALYSIS TOOLS AND EXPERIMENTAL ENVIRONMENT

To monitor and analyze TLB behavior for benchmark programs running on a

variety of operating systems, we have developed a hardware-monitoring

system called Monster and a TLB simulator called Tapeworm. The remainder

of this section describes these tools and the experimental environment in

which they are used.

3.1 System Monitoring with Monster

The Monster monitoring system (Figure 1) enables comprehensive analyses of

the interaction between operating systems and architectures. Monster is

comprised of a monitored DE Citation 3100, an attached logic analyzer, and a

controlling workstation. The logic analyzer component of Monster contains a
programmable hardware state machine and a 128 K-entry trace buffer. The

state machine includes pattern recognition hardware that can sense the
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FIR 1 The Monster monitormg system Monster is a hardware-momtonng system conslstmg of

a Tektromx DAS 9200 Logic Analyzer and a DECstatlon 3100 runmng three operat]ng systems

Ultnx, OSF/1, and Mach 3.0. The DECstatlon motherboard has been modified to provide access

to the CPU pros, which he between the processor and the cache This allows the logic analyzer to

momtur vu-tually all system act]vlty. To enable the lo&c analyzer to trigger on certain operating

systems events, such as the servlcmg of a TLB miss, each operating system has been instru-

mented with special marker NOP instructions that md]cate the entry and exit points of various

routines

processor’s address, data, and control signals on every clock cycle. This state

machine can be programmed to trigger on predefine patterns appearing at

the CPU bus and then store these signals and a timestamp (with 1 ns

resolution) into the trace buffer. Monster’s capabilities are described more

completely in Nagle et al. [1992].

In this article, we used Monster to measure TLB miss-handling costs by

instrumenting each OS kernel with marker instructions denoting entry and

exit points of various code segments. The instrumented kernels were then

monitored with the logic analyzer, whose state machine detected and stored

the marker instructions and a nanosecond resolution timestamp into the logic

analyzer’s trace buffer. Once filled, the trace buffer was postprocessed to

obtain a histogram of time spent in the different invocations of the TLB miss

handlers. This technique allowed us to time single executions of code paths

with far greater accuracy than can be obtained using the coarser-resolution

system clock. It also avoids the problems inherent in the common method of

improving system clock resolution by taking averages over repeated invoca-

tions [Clapp et al. 1986]. Note that this measurement technique is not limited

to processors with off-chip caches. Externally observable markers can be

implemented on a processor with on-chip caches through noncached memory
accesses.

3.2 TLB Slmulatlon with Tapeworm

Many previous TLB studies have used trace-driven simulation to explore

design tradeoffs [Alexander et al. 1985; Clark and Emer 1985; Talluri et al.

1992]. However, there are a number of difficulties with trace-driven TLB

simulation. First, it is difficult to obtain accurate traces. Code annotation

tools like pixie [Smith 199 1] or AE [Larus 1990] generate user-level address

ACM Tran+act]ons on Pomputer Systems, Vol 12, No 3, August 1994



Software-Managed TLBs . 179

traces for a single task. However, more complex tools, such as hardware

monitors [Agarwal et al. 1988; Clark and Emer 1985] or annotated kernels

[Chen 1993], are required to obtain realistic system-wide address traces that

account for both multiprocess workloads and the operating system itself.

Second, trace-driven simulation can consume considerable processing and

storage resources. Some researchers have overcome the storage resource

problem by consuming traces on-the-fly [Agarwal et al. 1988; Chen et al.

1992]. This technique requires that system operation be suspended for ex-

tended periods of time while the trace is processed, thus introducing distor-

tion at regular intervals. Third, trace-driven simulation assumes that address

traces are invariant to changes in the structural parameters or management

policies of a simulated TLB. While this may be true for cache simulation

(where misses are serviced by hardware state machines), it is not true for

software-managed TLBs where a miss (or absence thereof) directly changes

the stream of instruction and data addresses flowing through the processor.

Because the code that services a TLB miss can itself induce a TLB miss, the

interaction between a change in TLB structure and the resulting system

address trace can be quite complex.

We have overcome these problems by compiling our TLB simulator, Tape-

worm, directly into the OSF/ 1 and Mach 3.0 operating system kernels.

Tapeworm relies on the fact that all TLB misses in an R2000-based DECsta-

tion 3100 are handled by software. We modified the operating systems’ TLB

miss handlers to call the Tapeworm code via procedural “hooks” after every

miss. This mechanism passes the relevant information about all user and

kernel TLB misses directly to the Tapeworm simulator. Tapeworm uses

this information to maintain its own data structures and to simulate other

possible TLB configurations.

A simulated TLB can be either larger or smaller than the actual TLB.

Tapeworm ensures that the actual TLB only holds entries available in the

simulated TLB. For example, to simulate a TLB with 128 slots using only 64

actual TLB slots (Figure 2), Tapeworm maintains an array of 128 virtual-to-

physical address mappings and checks each memory reference that misses

the actual TLB to determine if it would have also missed the larger, simu-

lated one. Thus, Tapeworm maintains a strict inclusion property between the

actual and simulated TLBs. Tapeworm controls the actual TLB management

policies by supplying placement and replacement functions called by the

operating system miss handlers. It can simulate TLBs with fewer entries

than the actual TLB by providing a placement function that never utilizes

certain slots in the actual TLB. Tapeworm uses this same technique to

restrict the associativity of the actual TLB.1 By combining these policy

functions with adherence to the inclusion property, Tapeworm can simulate

the performance of a wide range of different-sized TLBs with different

degrees of associativity and a variety of placement and replacement policies.

—
1 The actual R2000 TLB is fully associative, but varying degrees of associativity can be emulated

by using certain bits of a mapping’s virtual page number to restrict the slot (or set of slots) mto

which the mapping may be placed.
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(128 Slots)
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Fig. 2. Tapeworm. The Tapeworm TLB simulator is btnlt mto the operating system and IS

revoked whenever there M a real TLB miss The .wmulator uses the real TLB misses to simulate

Its own TLB configuration(s), Because the simulator resides m the operating system, Tapeworm

captures the dynamic nature of the system and avoids the problems associated with simulators

driven by static traces

The Tapeworm design avoids many of the problems with trace-driven TLB

simulation cited above. Because Tapeworm is driven by procedure calls

within the OS kernel, it does not require address traces at all; the various

difficulties with extracting, storing, and processing large address traces are

completely avoided. Because Tapeworm is invoked by the machine’s actual

TLB miss-handling code, it considers the impact of all TLB misses whether

they are caused by user-level tasks or the kernel itself. The Tapeworm code

and data structures are placed in unmapped memory and therefore do not

distort simulation results by causing additional TLB misses. Finally, because

Tapeworm changes the structural parameters and management policies of

the actual TLB, the behavior of the system itself changes automatically, thus

avoiding the distortion inherent in fixed traces.

3.3 Experimental Environment

All experiments were performed on a DECstation 31002 running three

different base operating systems (Table I): Ultrix, OSF/ 1, Mach 3.0. Each of

these systems includes a standard Unix file system (UFS) [McKusick et al.

1984]. Two additional versions of Mach 3.0 include the Andrew file system

(AFS) cache manager [Satyanarayanan 1990]. One version places the AFS
cache manager m the Mach Unix Server @FSin) while the other migrates the

AFS cache manager into a separate server task (AFSout).

To obtain measurements, all of the operating systems were instrumented

with counters and markers. For TLB simulation, Tapeworm was embedded in

the OSF/ 1 and Mach 3.0 kernels.

2The DECstation 3100 contains an R2000 microprocessor (16,67 MHz) and 16 Megabytes of

memory.
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Table I. Benchmarks and Operating Systems.

Benchmark Description

compress Uncompressed and compresses a 7.7 Megabyte video clip.

IOzone Asequential file l/O benchmark that writes and then readsa 10
Megabyte file. Written by Bill Norcott.

jpeg~lay Thexloadimage program written by Jim Frost. Displays four
JPEG images.

mab John Ousterhout’s Modified Andrew Benchmark [18].

mpeg~lay mpeg_play V2.O from the Berkeley Plateau Research Group.
Displays 610 frames from a compressed video file [19].

ousterhout John Ousterhout’s benchmark suite from [18].

video~lay A modified version of mpeg~lay that displays 610 frames from
an uncompressed video file.

Operating System Description

Lfltrix Version 3.1 from Dlgtal Equipment Corporation.

OSFI1 OSF/1 10 is the Open Software Foundation’s version of Mach
2.5,

Mach 3.0 Carnagle Mellon University’s version mk77 of the kernel and uk38
of the UNIX server.

Mach3+AFSin Same as Mach 3.0, but with the AFS cache manager (CM) run-
ning in the UNIX server.

Mach3+AFSout Same as Mach 3.0, but with the AFS cache manager running as a
separate task outside of the UNIX server. Not all of the CM func-
tlonalky has been moved into this server task.

Benchmarks were compded with the Ultrlx C compiler version 2.1 (level-2 optimization). Inputs

were tuned so that each benchmark takes approximately the same amount of time to run

( 100–200 seconds under Mach 3.0) All measurements cited are the average of three runs.

Throughout this article we use the benchmarks listed in Table I. The same

benchmark binaries were used on all the operating systems. Each measure-

ment cited in this article is the average of three trials.

4. OS IMPACT ON SOFTWARE-MANAGED TLBS

Operating system references have a strong influence on TLB performance.

Yet, few studies have examined these effects, with most confined to a single

operating system [Clark and Emer 1985]. However, differences between

operating systems can be substantial. To illustrate this point, we ran our

benchmark suite on each of the operating systems listed in Table I. The

results (Table II) show that although the same application binaries were run

on each system, there is significant variance in the number of TLB misses

and total TLB service time. Some of these increases are due to differences in

the functionality between operating systems (i.e., UFS vs. AFS). Other in-

creases are due to the structure of the operating systems. For example, the
monolithic Ultrix kernel spends only 11.82 seconds handling TLB misses,

while the microkernel-based Mach 3.0 spends 80.01 seconds.
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Table 11. Total TLB Misses across the Benchmarks.

Operating System
Run Time Total Number Total TLB Service Ratio to Ultrix TLB

(see) of TLB Misses Time (sec~ Service Time

Ultrix 3.1 583 9,177,401 11.82 1.0

OSFII 892 11,691,398 51.85 4.39

Mach 3.0 975 24,349,121 80.01 6.77

Mach3+AFSin 1,371 33,933,413 106.56 9.02

Mach3+AFSout 1,517 36,649,834 134.71 11.40

*Time based on measured median time to service TLB miss.

The total run-time and number of TLB misses recurred by the seven benchmark programs

Although the same application binaries were run on each of the operating systems, there m a

substantial difference m the number of TLB nmmcs and their correspond]n g service times

Notice that while the total number of TLB misses increases four fold (from

9,177,401 to 36,639,834 for AFSout), the total time spent servicing TLB

misses increases 11.4 times. This is due to the fact that there are different

types of software-managed TLB misses, each with its own associated cost. For

this reason, it is important to understand page table structure, its relation-

ship to TLB miss handling, and the frequencies and costs of different types of

misses.

4.1 Page Tables and Translation Hardware

OSF/1 and Mach 3.0 both implement linear page table structures (Figure 3).

Each task has its own level-l (Ll) page table, which is maintained by

machine-independent pmap code [Rashid et al. 1988]. Because the user page

tables can require several megabytes of space, they are themselves stored in

the virtual address space. This is supported through level-2 (L2 or kernel)

page tables, which also map other kernel data. Because kernel data is
relatively large and sparse, the L2 page tables are also mapped. This gives

rise to a 3-level page table hierarchy and four different page table entry

(PTE) types.

The R2000 processor contains a 64-slot, fully associative TLB, which is

used to cache recently used PTEs. When the R2000 translates a virtual

address to a physical address, the relevant PTE must be held by the TLB. If

the PTE is absent, the hardware invokes a trap to a software TLB miss-han-
dling routine that finds and inserts the missing PTE into the TLB. The R2000

supports two different types of TLB miss vectors. The fh-st, called the user

TLB (uTLB) vector, is used to trap on missing translations for LIU pages.

This vector is justified by the fact that TLB misses on LIU PTEs are typically

the most frequent [DeMoney et al. 1986]. All other TLB miss types (such as

those caused by references to kernel pages, invalid pages, or read-only pages)

and all other interrupts and exceptions trap to a second vector, called the

generic-exception vector.
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page of user text or data.
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Each PTE maps one,4K
page of kernel text or

L2 PTE data.
Each L2 PTE maps one,
1,024 entry user page

L2 table page.

Vw’tualAddress Space

Physical Address Space

L3

m

L3 PTE
Each L3 PTE maps 1

u page of either L2 PTEs
or LIK PTEs.

Fig, 3. Page table structure in OSF/1 and Mach 3.0. The Mach page tables form a 3-level

structure with the first two levels residing in virtual (mapped) space. The top of the page tab] e

structure holds the user pages which are mapped by level-1 user (LIU) PTEs. These LIU PTEs

are stored in the L1 page table with each task having its own set of L1 page tables,

Mapping the L1 page tables are the level-2 (L2) PTEs. They are stored in tbe L2 page tables

which hold both L2 PTEs and level-1 kernel (LIK) PTEs. In turn, the L2 pages are m appeal by

the level-3 (L3 ) PTEs stored in the L3 page table. At boot time, the L3 page table is fixed in

unmapped physical memory. This serves as an anchor to the page table hierarchy because

references to the L3 page table do not go through the TLB.

The MIPS R2000 architecture has a fixed 4 KByte page size. Each PTE requires 4 bytes of

storage, Therefore, a single L1 page table page can hold 1,024 LIU PTEs, or 4 Megabytes of

virtual address space. Likewise, the L2 page tables can directly map either 4 Megabytes of kernel

data or indirectly map 4 GBytes of LIU data.

For the purposes of this case study, we define TLB miss types (Table 111) to

correspond to the linear page table structure implemented by OSF\ 1 and

Mach 3.0.3 In addition to LIU TLB misses, we define five subcategories of

kernel TLB misses (LIK, L2, L3, modify, and invalid). Table III shows also

our measurements of the time required to handle the different types of TLB
misses. The wide differential in costs is primarily due to the two different

miss vectors and the way that the OS uses them. LIU PTEs can be retrieved

within 16 cycles because they are serviced by a highly tuned handler inserted

at the uTLB vector. However, other miss types require anywhere from about

3 Other page table structures are possible and could lead to a different set of definitions and

conclusions. Huck and Hays [1993] have examined the impact of forward-mapped, inverted, and

hashed page table structures on TLB mms-handhng times.
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Table III Costs for Different TLB Mms Types

TLB Miss Type Ultrix OSFI1 Mach 3.0

LI U 16 20 20

LI K 333 355 294

L2 494 511 407

L3 354 286

Modify 375 436 499

Invalld 336 277 267

This table shows the number of machme cycles (at 60 ns/cycle) reqmred to service different

types of TLB misses To determine these costs. Monster was used to collect a 128 K-entry

histogram of timings for each type of miss, We separate TLB miss types mto the SIX categories

described below. Note that Ultrix does not have L3 misses because It Implements a 2-level page

table.

LILT TLB mms on a level-l user PTE

LIK TLB miss on a level-l kernel PTE
LZ TLB miss on level-2 PTE This can only occur after a miss on a level-l user PTE.

L3 TLB miss on a level-3 PTE Can occur after elthcr a level-2 mms or a level-l

kernel miss.

Modify A page protection vlolatlon

Invahd An access to a page marked as invalid (page fault)

300 to over 500 cycles because they are serviced by the generic handler

residing at the generic-exception vector.

The R2000 TLB hardware supports partitioning of the TLB into two sets of

slots. The lower partition is intended for PTEs with high retrieval costs, while

the upper partition is intended to hold more frequently used PTEs that can

be refetched quickly (e.g., LIU) or infrequently referenced PTEs (e.g., L3).

The TLB hardware also supports random replacement of PTEs in the upper

partition through a hardware index register that returns random numbers in

the range 8 to 63. This, effectively, fixes the TLB partition at 8, so that

the lower partition consists of slots O through 7, while the upper partition

consists of slots 8 through 63.

4.2 OS Influence on TLB Performance

In the versions of the operating systems studied, there are three basic factors

which account for the variation in the number of TLB misses and their

associated costs (Table IV and Figure 4). They are: (1) the use of mapped

memory by the kernel (both for page tables and other kernel data structures);

(2) the placement of functionality within the kernel, with a user-level server
process (service migration), or divided among several server processes (OS

decomposition); and (3) the range of functionality provided by the system

(additional OS services). The rest of this section uses our data to examine the
relationship between these OS characteristics and TLB performance.

4.2.1 Mapping Kernel Data Structures. Unmapped portions of the kernel’s

address space do not rely on the TLB. Mapping kernel data structures,

therefore, adds a new category of TLB misses: LIK misses. For the operating
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Table IV. Characteristics of the Operating Systems Studied.

0s Mapped Kernel Service Service Additional
Data Structures Migration Decomposition OS Services

Ultrix Few None None X Server

OSF/1 Many None None X Server

Mach 3.0 Some Some Some X Server

Mach3+AFSin Some Some Some X Server& AFS CM

Mach3+AFSout Some Some Many X Server& AFS CM

systems we examined, an increase in the number of LIK misses can have a

substantial impact on TLB performance because each L lK miss requires

several hundred cycles to service.

Ultrix places most of its data structures in a small, fixed portion of

unmapped memory that is reserved by the OS at boot time. However, to

maintain flexibility, Ultrix can draw upon the much larger virtual space if it

exhausts this fixed-size unmapped memory. Table V shows that few LIK

misses occur under Ultrix.

In contrast, OSF/ 1 and Mach 3.0L place most of their kernel data struc-

tures in mapped virtual place, forcing them to rely heavily on the TLB. Both

OSF/1 and Mach 3.0 mix the LIK PTEs and LIU PTEs in the TLB’s 56

upper slots. This contention produces a large number of LIK misses. Further,

handling an LIK miss can result in an L3 miss.5 In our measurements,

OSF/1 and Mach 3.0 both incur more than 1.5 million LIK misses. OSF/1

must spend 6270 of its TLB handing time servicing these misses while Mach

3.0 spends 3770 of its TLB handling time servicing LIK misses.

4.2.2 Service Migration. In a traditional operating system kernel such as

Ultrix or OSF/ 1 (Figure 4), all OS services reside within the kernel, with

only the kernel’s data structures mapped into the virtual space. Many of

these services, however, can be moved into separate server tasks, increasing

the modularity and extensibility of the operating system [Anderson et al.

1991]. For this reason, numerous microkernel-based operating systems have

been developed in recent years (e.g., Chorus [Dean and Armand 1991], Mach

3.0 [Accetta 1986], and V [Cheriton 1984]).

By migrating these services into separate user-level tasks, operating sys-

tems like Mach 3.0, fundamentally, change the behavior of the system for two

reasons. First, moving OS services into user space requires, on the MIPS

RISC architecture, that both their program text and their data structures be

mapped. On other architectures that provide a small number of entries to

4Like Ultrix, Mach 3.0 reserves a portion of unmapped space for dynamic allocation of data

structures. However, it appears that Mach 3.0 uses this unmapped space quickly and must begin
to allocate mapped memory Once Mach 30 has allocated mapped space, it does not distinguish

between mapped and unmapped space despite their differing costs.

5L1K PTEs are stored in the mapped, L2 page tables (Figure 3).
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map large blocks, such as the entire kernel, these entries may be exhausted

[Digital 1992; Hewlett-Packard 1990; Kane and Heinrich 1992; Motorola

1990; 1993]. In either case, migrated services will have to share more of the

TLB with user tasks, possibly conflicting with the user tasks’ TLB footprints.

Comparing the number of LIU misses in OSF/1 and Mach 3.0, we see a

2.2-fold increase from 9.8 million to 21.5 million. This is directly due to

moving OS services into mapped user space. The second change comes from

moving OS data structures from mapped kernel space to mapped user space.

In user space, the data structures are mapped by LIU PTEs, which are

handled by the fast uTLB handler (20 cycles for Mach 3.0). In contrast, the

same data structures in kernel space are mapped by LIK PTEs, which are

serviced by the general-exception handler.

4.2.3 Operating System Decomposition. Moving OS functionality into a

monolithic Unix server does not achieve the full potential of a microkernel-

based operating system. Operating system functionality can be further de-

composed into individual server tasks. The resulting system is more flexible

and can provide a higher degree of fault tolerance.

Unfortunately, experience with fully decomposed systems has shown severe

performance problems. Anderson et al. [1991] compared the performance of a

monolithic Mach 2.5 and a microkernel Mach 3.0 operating system with a

substantial portion of the file system functionality ~unning as a separate AFS

cache manager task. Their results demonstrate a significant performance gap

between the two systems with Mach 2.5 running 36’% faster than Mach 3.0,

despite the fact that only a single additional server task is used. Later

versions of Mach 3.0 have overcome this performance gap by integrating the

AFS cache manager into the Unix server.

We compared our benchmarks running on the Mach3 + AFSin system

against the same benchmarks running on the Mach3 + AFSout system. The

only structural difference between the systems is the location of the AFS

cache manager. The results (Table V) show a substantial increase in the

number of both L2 and L3 misses. Many of the L3 misses are due to missing

mappings needed to service L2 misses.

The L2 PTEs compete for the R2000’s 8 lower TLB slots. Yet, the number of

L2 slots required is proportional to the number of tasks providing an OS

service concurrently. As a result, adding just a single, tightly coupled service

task overloads the TLB’s ability to map L2 page tables. Thrashing results.

This increase in L2 misses will grow ever more costly as systems continue to

decompose services into separate tasks.

4.2.4 Additional OS Functionality. In addition to OS decomposition and

migration, many systems provide supplemental services (e.g., X, AFS, NFS,

Quicklime). Each of these services, when interacting with an application, can

change the operating system behavior and how it interacts with the TLB

hardware.

For example, adding a distributed file service (in the form of an AFS

cache manager) to the Mach 3.0 Unix server adds 10.39 seconds to the

LIU TLB miss-handling time (Table VI). This is due solely to the increased

ACM Transactions on Computer Systems, Vol 12, No 3, August 1994



Software-Managed TLBs . 189

ACM Transactions on Computer Systems, Vol. 12, No. 3, August 1994



190 . Richard Uhlig et al

functionality residing in the Unix server. However, LIK misses also increase,

adding 14.3 seconds. These misses are due to the additional memory manage-

ment the Mach 3.0 kernel must provide for the AFS cache manager. In-

creased functionality will have an important impact on how architectures

support operating systems and to what degree operating systems can in-

crease and decompose functionality.

5. IMPROVING TLB PERFORMANCE

This section examines both hardware- and software-based techniques for

improving TLB performance. However, before we suggest changes, it is

helpful to review the motivations behind the design of the R2000 TLB,

described in Section 4.1.

The MIPS R2000 TLB design is based on two principal assumptions

[DeMoney et al. 1986]. First, LIU misses are assumed to be the most frequent

( > 9592) of all TLB miss types. Second, all OS text and most of the OS data

structures (with the exception of user page tables) are assumed to be un-

mapped. The R2000 TLB design reflects these assumptions by providing two

types of TLB miss vectors: the fast uTLB vector and the much slower

general-exception vector. These assumptions are also reflected in the parti-

tioning of the 64 TLB slots into the two disjoint sets of 8 lower slots and 56

upper slots. The 8 lower slots are intended to accommodate a traditional Unix

task (which requires at least three L2 PTEs) and Unix kernel (2 PTEs for

kernel data). with three L2 PTEs left for additional data segments.

Our measurements (Table V) demonstrate that these design choices make

sense for a traditional Unix operating system such as Ultrix. For Ultrix, LIU

misses constitute 98.3% of all misses. The remaining miss types impose only

a small penalty. However, these assumptions break down for the OSF/ 1- and

Mach 3. O-based systems. In these systems, the costly non-LIU misses account

for the majority of time spent handling TLB misses. Handling these misses

substantially increases the cost of software-TLB management (Table VI).

The rest of this section proposes and explores four ways in which software-

managed TLBs can be improved. First, the cost of certain types of TLB misses

can be reduced by modifying the TLB vector scheme. Second, the number of

L2 misses can be reduced by increasing the number of lower slots.G Third, the

frequency of most types of TLB misses can be reduced if more total TLB slots

are added to the architecture. Finally, we examine the tradeoffs between TLB

size and associativity.

5.1 Reducing Miss Costs

The data in Table V show a significant increase in LIK misses for OSF/1 and

Mach 3.0 when compared against Ultrix. This increase is due to both systems’

reliance on dynamic allocation of kernel mapped memory. The R2000’s TLB

performance suffers because LIK misses must be handled by the costly

generic-exception vector, which requires 294 cycles (Mach 3.0).

6The newer MIPS R4000 processor [Kane and Heinrlch 1992] Implements both of these changes

ACM Transactmns on Computer Systems, Vol 12. No 3. August 1994



Soitware-Managed TLBs . 191

Table VII. Benefits of Reduced TLB Miss Costs

Previous
Previous New

New
Type of To:ymost Total

Time

PTE Miss
Miss Miss Counts

cost
Saved

costs costs Table 6
(see)

(see)
(see)

L1U 20 20 30,123,212 36,15 36.15 0.00

L2 294 20 330,803 8.08 0.79 7.29

L1K 407 40 2,493,283 43.98 2.99 40.99

L3 286 286 690,441 11.85 11.85 0.00

Modify 499 499 127,245 3.81 3.81 0.00

Invahd 267 267 168,429 2.70 2.70 0.00

Total 33,933,413 106,56 58.29 48.28

This table shows the benefits of reducing TLB miss costs through the hardware-based approach

of adding a separate interrupt vector for L2 misses and allowing the uTLB handler to servme

LIK misses Thlschange reduces thelrcost to40and 20cycles, respectively. Their contribution

to TLB miss time drops from 8.08 and 4398 seconds down to 0.79 and 2.99 seconds, respectively.

These miss costs can be reduced either through better hardware support or

through more careful coding of the software miss handlers. For example,

hardware support could consist of additional vectors for LIK and L2 misses.

Based on our timing and analysis of the TLB handlers, we estimate that

vectoring the LIK misses through the uTLB handler would reduce the cost of

LIK misses from 294 cycles (for Mach 3.0) to approximately 20 cycles. We

also estimate that dedicating a separate TLB miss vector for L2 misses would

decrease their cost from 407 cycles (Mach 3.0) to under 40 cycles. Better

hardware support could also come in the form of a hybrid hardware/software

miss handler. For example, some systems implement the first step of a TLB

miss-handling algorithm in hardware and invoke a software handler to

implement the remaining steps of the algorithm only when necessary [Huck

and Hays 1993]. Such a scheme retains the benefits of software handling

(e.g., flexible page table structure and reduced hardware complexity relative

to systems with full table-walking hardware), but the average cost of TLB

misses is reduced. Alternatively, a software solution could test for L2 PTE

misses at the beginning of the generic-exception vector before invocation of

the code that saves register state and allocates a kernel stack.

Table VII shows the benefits of adding additional vectors. It uses the same

data for Mach3 + AFSin as shown in Table V, but is recomputed with the new

cost estimates resulting from the refinements above. The result of combining

these two modifications is that the total TLB miss service time drops from

106.56 seconds down to 58.29 seconds. LIK service drops 93%, and L2 miss

service time drops 90%. More importantly, the LIK and L2 misses no longer

contribute substantially to overall TLB service time. This minor design
modification enables the TLB to support much more effectively a microker-

nel-style operating system with multiple servers in separate address spaces.
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Multiple TLB miss vectors provide additional benefits. In the generic trap

handler, dozens of load and store instructions are used to save and restore a

task’s context. Many of these loads and stores cause cache misses requiring

the processor to stall. As processor speeds continue to outstrip memory access

times, the CPI in this save/restore region will grow, increasing the number

of wasted cycles and making non-uTLB misses much more expensive. TLB-

specific miss handlers will not suffer the same performance problems because

they contain only the single data reference to load the missed PTE from the

memory-resident page tables.

5.2 Partitioning the TLB

The MIPS R2000 TLB design mandates a partition of the TLB entries and

fixes its position between the 8 lower slots and the 56 upper slots. On other

architectures, it is possible to lock entries in the TLB, which can have much

the same effect as a partition, but with more flexibility in choosing

the number of slots to be locked [Milenkovic 1990; Motorola 1990]. The

MIPS R2000 partitioning is appropriate for an operating system like Ultrix

[DeMoney et al. 1986]. However, as OS designs migrate and decompose

functionality into separate user-space tasks, having only 8 lower slots be-

comes insufficient. This is because in a decomposed system the OS services

that reside in different user-level tasks compete by displacing each other’s L2

PTE mappings from the TLB.

In the following sections, we examine the influences of operating system

structure, workload, PTE placement policy, and PTE replacement policy on

the optimal partition point. We then propose an adaptive mechanism for

adjusting dynamically the partition point.

5.2.1 Influences on the Optimal Partition Point. To better understand the

impact of the position of the partition point, we measured how L2 miss rates

vary depending on the number of lower TLB slots available. Tapeworm was

used to vary the number of lower TLB slots from 4 to 16, while the total

number of TLB slots was kept fixed at 64. OSF/ 1 and all three versions of

Mach 3.0 ran the mab benchmark over the range of configurations, and the

total number of L2 misses was recorded (Figure 5).

For each operating system, two distinct regions can be identified. The left

region exhibits a steep decline which levels off near zero seconds. This shows

a significant performance improvement for every extra lower TLB slot made

available to the system, up to a certain point. For example, simply moving

from 4 to 5 lower slots decreases OSF\ 1 L2 miss-handling time by almost
507.. fiter 6 lower slots, the improvement slows because the TLB can hold

most of the L2 PTEs required by OSF/ 1.7

In contrast, the Mach 3.0 system continues to show significant improve-

ment up to 8 lower slots. The additional 3 slots needed to bring Mach 3.0’s

performance in line with OSF/ 1 are due to the migration of OS services from

7Tw0 L2 PTEs for kernel data structures and one each for a task’s text, data, and stack

segments.
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the kernel to the Unix server in user space. In Mach 3.0, whenever a task

makes a system call to the Unix server, the task and the Unix server must

share the TLB’s lower slots, In other words, the Unix server’s three L2 PTEs

(text segment, data segment, stack segment) increase the lower slot require-

ment, for the system as a whole, to 8.

Mach3 + AFSin’s behavior is similar to Mach 3.0 because the additional

AFS cache manager functionality is mapped by the Unix server’s L2 PTEs.

However, when the AFS cache manager is decomposed into a separate

user-level server, the TLB must hold three additional L2 PTEs (11 total).

Figure 5 shows how Mach3 + AFSout continues to improve until all 11 L2

PTEs can reside simultaneously in the TLB.

Unfortunately, increasing the size of the lower partition at the expense of

the upper partition has the side-effect of increasing the number of LIU, LIK,

and L3 misses as shown in Figure 6. Coupling the decreasing L2 misses with

the increasing LIU, LIK, and L3 misses yields an optimal partition point,

shown in Figure 6.

This partition point, however, is only optimal for the particular operating

system. Different operating systems with varying degrees of service migra-

tion have different optimal partition points. For example, the upper graph in

Figure 7 shows an optimal partition point of 8 for Mach 3.0, 10 for Mach3 +

AFSin, and 12 for Mach3 + AFSout, when running the Ousterhout benchmark.

Applications and their level of interaction with OS services also influence

the optimal partition point. The lower graph in Figure 7 shows the results for

various applications running under Mach 3.0. compress has an optimal

partition point at 8 slots. However, video_ play requires 14, and mpeg _ play

requires 18 lower slots to achieve optimal TLB performance. The need for

additional lower slots is due to video_ play and mpeg _ play’s increased inter-

action with services like the BSD server and the X server. It also underscores
the importance of understanding both the decomposition of the system and

how applications interact with the various OS services.
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Fig. 6 Total cost of TLB misses vs.

number of lower TLB slots. The total

cost of TLB mms serwcmg 1s plotted

against the LIU, LIK, L2, and L3

components of this total time. The

number of lower TLB slots varies from

4 to 32, while the total number of TLB

entries remams constant at 64 The

benchmark m video_ play runmng un-

der Mach 30.
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Fig. 7 Optimal partition points for various operating systems and benchmarks. As more lower

slots are allocated, fewer upper slots are avadable for the L lU, LIK, and L3 PTEs This yields an

optimal partltlon point which varies with the operating system and benchmark The left graph

shows the average of 3 runs of the ousterhout benchmark run under 3 different operating

systems. The right graph shows the average of 3 runs for 3 different benchmarks run under

Mach 3.0.
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The TLB partition was implemented to allow operating systems to separate

PTEs with low retrieval costs from PTEs with higher retrieval costs. All four

of our operating systems use the lower slots for L2 PTEs and the upper slots

for all other types of PTEs. However, it is unclear why the costly-to-retrieve

LIK and L3 PTEs are not placed in the lower slots, but are mixed with the

LIU PTEs. Further, if mixing costly-to-retrieve mappings with LIU PTEs is

acceptable, it is unclear if PTE partitioning is required at all.

To determine the effects of other PTE placement choices, we modified the

miss handlers of the baseline systems to implement other meaningful poli-

cies. The results are shown in Table VIII. Policy A is identical to that

implemented by the baseline systems. The importance of some sort of parti-

tioning is shown by Policy D, where all PTEs are mixed together, and which

demonstrates very poor performance. At first glance, the baseline policy A

appears to be the most desirable. However, note that with policies B and C,

the lower partition was not permitted to grow beyond 8 slots to accommodate

the additional PTE types allocated to this partition.

To see if the performance of policies B and C would improve with a larger

lower partition, we varied the partition point from its fixed location at 8.

Figure 8 shows the results for this experiment performed for PTE placement

policies A, B, and C. Only the total curves are shown. Note that each policy

has different optimal points, but at these optimal points the performance is

roughly the same for each system. From this we can conclude that the most

important PTE placement policy is the separation of LIU and L2 PTEs (to

avoid the very poor performance of policy D). However, the differences

between the other PTE placement policies A, B, and C are negligible, pro-

vided that the partition point is tuned to the optimal region.

Careful software management of the TLB can extend the degree to which

separate services can coexist in a system before performance degrades to an

unacceptable level. This is important because a key characteristic of micro-

kernel system structuring is that logically independent services should reside

in separate user-level tasks that communicate through message passing. To

illustrate this more clearly, we constructed a workload that emulates the

interaction between servers in a multiserver microkernel OS. In this work-

load, a collection of user-level tasks mimics the behavior of communicating

OS servers by passing a token between each other. The number of servers

and the number of pages that each server touches before passing the token

along can be varied. Figure 9 shows the results of running this multiserver

emulator on the Mach 3.0 kernel. With each additional server, the optimal

partitioning point moves farther to the right. A system that leaves the

partition point fixed at 8 will quickly encounter a performance bottleneck due

to the addition of servers. However, if the TLB partition point is adjusted to

account for the number of interacting servers in the system, a much greater

number of servers can be accommodated. Nevertheless, note that as more

servers are added, the optimal point still tends to shift upward, limiting the
number of tightly coupled servers that can coexist in the system. This

bottleneck is best dealt with through additional hardware support in the form

of larger TLBs or miss vectors dedicated to level-2 PTE misses.
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Table VIII Alternate PTE Placement Pohcies.

Policy PTE Placement cost

A Level 2 PTEs r lower partition. All other PTEs m 1.91
upper partition.

B Level 2 and 3 PTEs in lower parhtlon. Level 1 user 392
and kernel PTEs In upper parhtlon.

c All PTEs m lower part[tlon, except for level 1 user 2.46
PTEs which are placed m upper parht]on

D No partitioning at all 11.92

This table shows the affect of alternate PTE placement policles on TLB management cost The

cost M the total time spent (m seconds) to handle TLB mmses for the Mach 3.0 system running

ousterhout The partition point m fixed at 8 sloth for the lower partltlon and 56 slots for the upper

partltlon

f! Policy A

c Policy B

a Pollcy c

o !
4 8 12 16 20 24 28 32 36 40

ParWlOn Point

Fig 8 TLB partlt]onlng for different PTE placement pobcles. This 1s the same experiment as

that of Table VIII, except wlthdlffcrent PTEplacement pollcles Only thetotal TLB management

costs are shown The total cost for POIICY D (no partltlon) ]s off the scale of the plot at 11.92

seconds

The baseline systems use a FIFO replacement policy for the lower partition

and a random replacement policy for the upper partition when selecting
a PTE to evict from the TLB after a miss. To explore the effects of the

replacement policy in these two partitions, we modified the miss handlers to

try other combinations of FIFO and random replacements in the upper and

lower partitions. The results of one such experiment are shown in Figure 10.

For these workloads, differences between the replacement policies are negli-

gible over the full range of TLB partition points, indicating that the choice

between these two replacement policies is not very important. Our trap-driven

simulation method makes it difficult to simulate nonrecently used and other
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Fig. 9. TLB partitioning under multiserver operating systems. This graph shows total TLB

management costs for Mach 3.0 running a workload that emulates a multlserver system by

passing a token among different numbers ofuser-level tasks.
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Fig. 10. Replacement policies. This graph shows the performance of different replacement

policies (random or FIFO) for the Mach 3.0 system implementing PTE placement policy A on

ousterhout.
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Table IX Different TLBPartltlonlng Schemes.

Fixed Static Dynamic
Partitioning Partitioning Partitioning

Workload (see) (see) (see)

ous terhout 392 (8) 1.27(18) 1 11

vldeo~lay 161 (8) 147(18) 143

IOzone 1 30(8) O 43 (32) 043

This table compares the total TLB management costs when fixing the partltlon at 8, when

settmglt to the static optimal point (shown m parentheses), and when using dynamic partltlon-

mg, The PTE placement pohcy 1s B,

pseudo-LRU policies, so currently we cannot extend this statement to other

policies.

5.2.2 Dynamic Partitioning. We have shown that the best place to set the

TLB partition point varies depending on the operating system structure,

workload, and PTE placement policy, but not the replacement policy. Given

knowledge of these factors ahead of time, it is possible to determine the

optimal partition point and then flx it statically for the duration of some

processing run. However, although an operating system can control PTE

placement policy and have knowledge of its own structure, it can do little to

predict the nature of future workloads that it must service. Although system

administrators might have knowledge of the sort of workloads that are

typically run at a given installation, parameters that must be tuned manu-

ally are often left untouched or are set incorrectly.

To address these problems, we have designed and implemented a simple,

adaptive algorithm that self-tunes the TLB partition dynamically to the

optimal point. The algorithm is invoked after some fixed number of TLB

misses at which time it decides to move the partition point either up, down,

or not at all. It is based on a hill-climbing approach, where the objective

function is computed from the two most recent settings of the partition point.

At each invocation, the algorithm tests to see if the most recent partition

change resulted in a significant increase or decrease in TLB miss-handling

costs when compared against the previous setting. If so, the partition point is

adjusted appropriately. This algorithm tends to home in on the optimal

partition point and tracks this point as it changes with time.
We tested this algorithm on each of the benchmarks in our suite and

compared the resultant miss-handling costs against runs that flx the parti-

tion at 8 and at the static optimal point for the given benchmark. The results

are shown in Table IX. Note that dynamic partitioning yields results that at

times are slightly better than the static optimal. To explain this effect, we

performed another experiment that records the movement of the TLB parti-

tion point during the run of gee, a component of the mab benchmark. The

results (see Figure 11) show that the optimal partition point changes with
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Fig. 11. Dynamic TLB partitioning during gee, This graph shows the movement of the TLB

partition with time while running gcc on a system that implements the dynamic, adaptive

partitioning algorithm.

time as a benchmark moves among its working sets. Because the dynamic

partitioning algorithm tracks the optimal point with time, it has the potential

to give slightly better results than the static optimal which remains fixed at

some “good average point” for the duration of a run.

The invocation period for the dynamic partitioning algorithm can be set so

that its overhead is minimal. It should be noted, however, that there is an

additional cost for maintaining the TLB miss counts that are required to

compute the objective function. Although this cost is negligible for the already

costly L2 and L3 PTE misses, it is more substantial for the highly tuned L1

PTE miss handler.8 Hardware support in the form of a register that counts

L1 misses could help to reduce this cost.

5.3 Increasing TLB Size

In this section we examine the benefits of building TLBs with additional

upper slots. The tradeoffs here can be more complex because the upper slots

are used to hold three different types of mappings (LIU, LIK, and L3 PTEs),

whereas the lower slots only hold L2 PTEs.

To better understand the requirements for upper slots, we used Tapeworm

to simulate TLB configurations ranging from 32 to 512 upper slots. Each of

these TLB configurations was fully associative and had 16 lower slots to

minimize L2 misses.

Figure 12 shows TLB performance for all seven benchmarks under OSF/1.

For smaller TLBs, the most significant components are LIK misses; LIU and

8Maintaining a memory-resident counter in the level-l miss handler requires a load-increment-
store sequence On the R2000, this can require anywhere from 4 to 10 cycles, depending on

whether the memory reference hits the data cache. This is a 20@+ to 507( increase over the

20-cycle average currently required by the level-l miss handler.
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L3 misses account for less than 357. of the total TLB miss-handling time. The

prominence of LIK misses is due to the large number of mapped data

structures in the OSF\ 1 kernel. However, as outlined in Section 5.1, modify-

ing the hardware trap mechanism to allow the uTLB handler to service LIK

misses reduces the LIK service time to an estimated 20 cycles. Therefore, we

recomputed the total time using the lower-cost LIK miss service time (20

cycles) for the OSF/ 1, Mach 3.0, and Mach3 + AFSout systems (Figure 13).

With the cost of LIK misses reduced, TLB miss-handling time is dominated

by LIU misses. In each system, there is a noticeable improvement in TLB

service time as TLB sizes increase from 32 to 128 slots. For example, moving

from 64 to 128 slots decreases Mach 3.0 TLB handling time by over 5070.

After 128 slots, invalid and modify misses dominate (listed as “other” in the

figures). Because the invalid and modify misses are constant with respect to

TLB size, any further increases in TLB size will have a negligible effect on

overall TLB performance. This suggests that a 128- or 256-entry TLB may be

sufficient to support both monolithic operating systems like Ultrix and OSF/ 1

and microkernel operating systems like Mach 3.0. Of course, even larger

TLBs may be needed to support large applications such as CAD programs.

However, this article is limited to TLB support for operating systems running

a modest workload. The reader is referred to Chen et al. [ 1992] for a detailed

discussion of TLB support for large applications.

5.4 TLB Associativlty

Large, fully associative TLBs (128+ entries) are difficult to build and can

consume nearly twice the chip area of a direct mapped structure of the same

capacity [Mulder et al. 199 I]. To achieve high TLB performance, computer

architects could implement larger TLBs with lesser degrees of associativity.

The following section explores the effectiveness of TLBs with varying degrees

of associativity.
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Fig. 13. Modified TLB service time vs. number of upper TLB slots. The total cost of TLB miss

servicing (for all seven benchmarks) assuming L lK misses can be handled by the uTLB handler

in 20 cycles and L2 misses are handled in 40 cycles. The top graphs are for OSF/1 and Mach 3.0,

and the bottom for Mach3 + AFSout. Note that the scale varies for each graph.

Many current-generation processors implement fully associative TLBs with

sizes ranging from 32 to more than 100 entries (Table X). However, technol-

ogy limitations may force designers to begin building larger TLBs which are

not fully associative. To explore the performance impact of limiting TLB

associativity, we used Tapeworm to simulate TLBs with varying degrees of

associativit y.

The top two graphs in Figure 14 show the total TLB miss-handling time for
the mpeg _ play benchmark under Mach3 + AFSout and the video– play

benchmark under Mach 3.0. Throughout the range of TLB sizes, increasing

associativity reduces the total TLB handling time. These figures illustrate the
general “rule of thumb” that doubling the size of a caching structure will
yield about the same performance as doubling the degree of associativity

[Patterson and Hennessy 19901.
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Table X. Number of TLB Slots for Current Processors

Number of Number of

Processor Associativity Instruction Data

slots slots

DEC Alpha 21064 full 8+4 32

IBM RS/6000 I 2-way I 32 I 128

TI Viking I full I 64 unrfred I —

MIPS R2000 I full I 64 unlfled I —

MIPS R4000 full 48 urvf!ed

HP 9000 Series 700 full 96+4 96+4

Intel 486 4-way 32 urmfled

Note that page sizes vary from 4K to 16 Meg and are variable m many processors The JIIPS

R4000 actually has 48 double slots Two PTEs can reside m one double slot If them virtual

mappings are to consecutive pages m the virtual address space [Dl~tal 1992]

25-

E+ 2-way
20 ~ {

E3 4-way
~ \
.s15— , –a 8-way

;
1= x Full
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Fig. 14 Total TLB service time for TLBs of different sizes and assoclatmtles
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Some benchmarks, however, can perform badly for TLBs with a small

degree of set associativity. For example, the bottom graph in Figure 14 shows

the total TLB miss-handling time for the compress benchmark under OSF/ 1.

For a 2-way set-associative TLB, compress displays pathological behavior.

Even a 512-entry, 2-way set-associative TLB is outperformed by a much

smaller 32-entry, 4-way set-associative TLB.

These three graphs show that reducing associativity to enable the construc-

tion of larger TLBs is an effective technique for reducing TLB misses.

6. SUMMARY

This article seeks to demonstrate to architects and operating system design-

ers the importance of understanding the interactions between hardware and

software features, and the importance of tools for the measurement and

simulation of these interactions. In the case study presented here, numerous

performance problems resulted when a microkernel operating system was

ported to a new platform. A significant component of the problem was

attributable to an increased utilization of the TLB. Software management

magnified the TLB’s impact on overall performance because of the large

variations in TLB miss service times that can exist.

The construction of the TLB can significantly influence TLB performance.

TLB behavior depends on the kernel’s use of virtual memory to map its own

data structures, including the page tables themselves. TLB behavior is

dependent also on the division of service functionality between the kernel and

separate user tasks. Currently popular microkernel approaches rely on multi-

ple server tasks, but here fell prey to performance difficulties with even a

modest degree of service decomposition.

In our study, we have presented measurements of actual systems on a

current machine, together with simulations of architectural problems, and

have related the results to the differences between operating systems. We

have outlined four architectural solutions to the problems experienced by

microkernel-based systems: changes in the vectoring of TLB misses, flexible

partitioning of the TLB, providing larger TLBs, and limiting the degree of

associativity to enable construction of larger TLBs. The first two can be

implemented at little cost, as is done in the R4000. These solutions are most

applicable to the MIPS RISC architectural family on which the studies were

performed. The more general lessons regarding the trends in operating

system design, their potential for interaction with architectural features on

machines to which they are ported, and the utility of tools for assessing these
impacts are, we feel, more broadly applicable.
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