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Abstract-In this paper we apply a recently formulated gen- 
eral timing model of synchronous operation to the special case 
of latch-controlled pipelined circuits. The model accounts for 
multiphase synchronous clocking, correctly captures the be- 
havior of level-sensitive latches, handles both short- and long- 
path delays, accommodates wave pipelining, and leads to a 
comprehensive set of timing constraints. Pipeline circuits are 
important because of their frequent use in computer systems. 
We define their concurrency as a function of the clock schedule 
and degree of wave pipelining. We then identify a special class 
of clock schedules, coincident multiphase clocks, which provide 
a lower bound on the value of the optimum cycle time. We show 
that the region of feasible solutions for single-phase clocking 
can be nonconvex or even disjoint, and derive a closed-form 
expression for the minimum cycle time of a restricted but prac- 
tical form of single-phase clocking. We compare these forms of 
clocking on three pipeline examples and highlight some of the 
issues in pipeline synchronization. 
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I. INTRODUCTION 
N THIS PAPER we extend the work reported in [ l ]  I which applied a recently formulated general timing 

model of synchronous operation [2] to the special case of 
pipelined circuits. The model accounts for multiphase 
synchronous clocking, correctly captures the behavior of 
level-sensitive latches, handles both short and long paths, 
and leads to a comprehensive, yet simple, set of timing 
constraints. It has been successfully applied, for general 
circuit topologies, to the problems of clock cycle min- 
imization using linear programming methods [3] and tim- 
ing verification using an iterative relaxation algorithm [4]. 

By applying this model to a simple circuit structure, 
this paper helps to clarify various aspects of the clocking 
of level-sensitive latches as a function of circuit propa- 
gation delays. These include the following: 

Defining pipeline concurrency as a function of the 
clock schedule and the degree of wave pipelining. 
Identifying a special class of clock schedules, coin- 
cident multiphase clocks, which yield the smallest 
possible cycle times for a specified degree of wave 
pipelining. 
Demonstrating that the space of physically realizable 
single-phase clock schedules derived from this model 
can be nonconvex or even disjoint, complicating the 
search for the optimal cycle time. 
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Providing a closed-form solution for the optimal 
cycle time of a restricted, but practical, form of sin- 
gle-phase clocking. 

sign of various pipelines, and finding those that yield the 
minimum cycle times. 

This paper addresses one aspect of the second step, - -  

In addition to helping understand the above issues, the 
study of pipelines is further justified by their increasing 
use, even in the instruction execution units of single-chip 
microprocessors (commonly referred to as ‘ ‘super-pipe- 
lining” in RISC machines) [5]. In particular, the above- 
mentioned closed-form expression for minimum cycle 
time may be directly applied in the design and optimiza- 
tion of high performance processors which use single- 
phase clocking. 

The remainder of this paper is organized as follows. 
The pipeline model is developed in Section 11. In Section 
I11 we examine the dependence of pipeline concurrency 
on clocking and wave pipelining, and define coincident 
multiphase clocks. In Section IV we derive the regions of 
feasibility for coincident multiphase clocking and for two 
modes of single-phase clocking. Section V illustrates the 
application of the model on three example pipelines using 
an experimental program, pipeT,, which computes the op- 
timal clock schedules for single-phase as well as coinci- 
dent multiphase clocking. Conclusions and suggestions 
for future work are summarized in Section VI. 

11. PIPELINE MODEL 
Pipelining is frequently used to speed up the execution 

of a sequence of computations by dividing each into n 
consecutive subcomputations and overlapping their exe- 
cution. Theoretically, this should yield a factor of n per- 
formance improvement over the nonpipelined case. This 
maximum is rarely achieved, however, because of de- 
pendencies among the operations and overhead due to 
clocking [6]. Performance can be defined as the sustained 
number of operations per unit time, and can be expressed 
as : 

where MOPS stands for millions of operations per second, 
0 I U(n)  I 1 is the utilization of the n-stage pipeline, 
and Tc(n) is the clock cycle time, in nanoseconds, at each 
pipe stage. Typically, U(n) is a decreasing function of n 
which is determined empirically through simulations or 
benchmarking. Tc(n) is also a decreasing function of n 
that depends on circuit delays and clocking parameters. 
Optimal pipeline design seeks to find the value of n which 
maximizes MOPS. This is usually done in two steps. 1) 
Determining U ( n )  for a suitable range of n by analyzing 
the dependencies among the operations of an appropriate 
set of benchmark computations. This is a purely “archi- 
tectural” analysis which disregards hardware implemen- 
tation details, but may consider software restructuring to 
decrease the dependence effects. 2) Determining the min- 
imum Tc(n) for the same range of n. Generally, this is a 
synthesis problem which involves examining the logic de- 

namely ,-determining the minimum cycle time, T,, for 
an n-stage pipeline in terms of circuit delays. The prob- 
lem has been addressed previously by a number of authors 
including [6]-[9]. This previous work dealt mostly with 
simple clocking paradigms. Furthermore, the analysis was 
typically based on examination of a single pipe stage. In 
contrast, in this paper we propose a pipeline timing model 
that accounts for more complex clocking and for the tem- 
poral interactions among the various pipe stages. 

Our pipeline model is shown in Fig. 1. The pipe stages 
are numbered consecutively from 0 to (n - 1). The da- 
tapath through the pipeline is assumed to be m bits wide, 
in 2 1. Each pipe stage consists of a bank of m level- 
sensitive latches used as synchronizing elements followed 
by combinational circuitry.* Data flow through the pipe- 
line is regulated by a k-phase clock, where 1 I k 5 n. 
Stage i is characterized by the following parameters: 

p i :  an integer denoting the clock phase used to 
control the synchronizing element at the out- 
put of stage i (henceforth referred to as syn- 
chronizer i ) .  

Si: nonnegative setup time of synchronizer i rela- 
tive to latching edge of phase p i .  

Hi: nonnegative hold time of synchronizer i rela- 
tive to latching edge of phase p i .  

6;,  A;: minimum and maximum propagation delays (0 
I 6i I Ai) from the input of synchronizer i 
- 1 to the input of synchronizer i .  Note that 
this definition of stage delay lumps together 
the two components of signal delay, namely 
the synchronizer delay and the combina- 
tional logic delay. 

Note that, unlike earlier open-ended pipeline formula- 
tions, such as those given in [6]-[9], our model includes 
a virtual pipe stage, labeled 0, which forms a simple loop 
with stages 1 through n - 1. Stage 0 is used to model the 
times of data arriving from, and data departing to, the 
environment surrounding the pipeline. For example, it can 
be used to model the timing attributes of the memory or 
register file used to supply operands for the computation, 
and to receive results from it. The use of such a virtual 
stage provides a consistent mechanism to account for the 
boundary conditions of pipeline operation. Furthermore, 
as shown in Section 2.3, the open-ended pipeline is a spe- 
cial case of the closed pipeline. 

We base the steady-state behavior of such pipelines on 
the general model of synchronous operation introduced in 
[2]. The salient features of this model, as they relate to 
the pipeline, are summarized below. In addition, we ex- 
tend the model to allow for wuve pipelined [ 101, [ 111 op- 

’The value of rn may vary from stage to stage and actually has no effect 
on the model. 



1134 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 8, AUGUST 1993 

-- - 
stage n-1 stage 1 stapei-1 L-v--/ 

stage i 

Fig. 1 .  n-stage pipeline. Shaded boxes represent the synchronizers. 

eration. Fig. 2 depicts the relationships among the key 
parameters used in the model. 

2.1.  Clocking Model 
The clocking model is described in terms of a temporal 

rather than a logical framework based on the concept of 
periodic phases which define local time zones related by 
phase shifr operators. In this model, a k-phase clock is 
considered to be a collection of k periodic signals 42, . . .  , 4k-referred to as the phases-with a common cycle 
time T,. Each phase 4p divides the clock cycle into two 
intervals: an active interval of duration Tp, and a passive 
interval of duration (T, - Tp). During the active interval 
of a given phase, the synchronizers it controls are en- 
abled; during its passive interval, they are disabled. The 
transitions into and out of the active interval are called, 
respectively, the enabling and latching edges of the phase. 
We assume, without loss of generality, that all phases are 
active high; thus, the enabling and latching edges corre- 
spond to the rising and falling transitions of the phase sig- 
nal. Associated with the phase is a local time zone such 
that the passive interval of the phase starts at t = 0, its 
enabling edge occurs at t = T, - Tp, and its latching edge 
occurs at t = T,. The temporal relationships among the k 
phases (i.e., among the different time zones) are estab- 
lished by an arbitrary choice of a global time reference. 
We introduce ep to denote the time, relative to this global 
time reference, at which phase 4p ends (i.e., when its 
latching edge occurs). Finally, we define a phase shifr op- 
erator: 

(er - e p ) ,  er > e p  
(1) 

which takes on positive values in the range (0, T,]. When 
subtracted from a time variable, tp,  in the current local 
time zone of 4p, EPr changes the frame of reference to the 
next local time zone of &, taking into account a possible 
cycle boundary crossing. 

i (T, + er - ep), er 5 ep 
Epr = 

2.2. Timing Constraints 
For timing purposes, it is sufficient to characterize a 

data signal with respect to one clock cycle by two, pos- 

Fig. 2. Key model parameters, 

sibly simultaneous, events which demark the interval dur- 
ing which the signal is switching between its old and new 
values. For the signal arriving at the input of synchro- 
nizer i these two events are defined to occur at t = ai and 
t = Ai in the local time zone of phase p i .  The correspond- 
ing events of the data signal departing from the input of 
synchronizer i are defined to occur at t = di and t = Di. 
It will be convenient to refer to ai and Ai as the earZy and 
late arrival times, and to di and Di as the early and late 
departure times. The timing model of the pipeline can now 
be expressed by the following constraints and equations 
[2] for i = 0, * * - , n  - 1 .  

Clock Constraints express limitations on clock gener- 
ation and distribution. This set should at least include the 
following minimum pulsewidth constraints: 

Tpi 2 wpi 

T, - Tpi 2 wPi (3) 

where wp, are specified pulse width parameters. In addi- 
tion, to simplify the design of the clock generator we may 
include “regularity” constraints such as 

T , = T , =  e . .  = Tk. (4) 

It is important to point out that the phase signals are not 
required to be nonoverlapping. 

Latching Constraints express the conditions necessary 
for capturing valid data values at each of the synchroniz- 
ers. They consist of two sets of requirements which, to- 
gether, insure that the data signal at the input of a syn- 
chronizer is stable for a sufficient period of time before 
and after the occurrence of the latching edge of the cor- 
responding clock. Mathematically, 

ai 1 Hi (5)  

Ai 5 T, - Si. (6) 

Synchronization Equations mucromodel the temporal 
behavior of different types of synchronizing elements. 
Specifically, for D-type level-sensitive latches, they ex- 
press the departure times of each output data signal as the 
later of the arrival time of the corresponding input data 
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signal and the enabling clock edge: 

di = max (ai, T, - T,,) 

Di = max (Ai,  T, - TpJ. 

(7) 

(8) 
Propagation Equations model the delay of the com- 

binational stages in the pipeline, including the propaga- 
tion through the input synchronizer. They express the ar- 
rival times of data at the input of synchronizer i in terms 
of the corresponding departure times from the input of 
synchronizer ( i  - 1) mod n ,  taking into account the 
change in the frame-of-reference from phase p i  - to phase 

(9) 

(10) 
where E i  - is the amount of phase shift from stage i - 
1 to stage i .  In [2], this was defined to be equal to the 
phase shift from clock phase p i  - to clock phase p i ,  i.e., 

This definition limited signal propaga- 
tion to consecutive cycles of phases p i  - and p i ;  i.e., sig- 
nals launched from stage i - 1 in any given cycle of phase 
pi - had to arrive and be correctly latched at stage i by 
the immediately following cycle of phase p i .  We extend 
this definition here to allow for signal propagation over 
multiple clock cycles by introducing the nonnegative in- 
teger parameter vi to indicate the number of additional 
clock cycles available for signals to propagate from stage 
i - 1 to stage i .  Thus, 

pi:3 
a .  = d .  

i 1 - 1  + 6i - L l , i  

Ai = D i - 1  + A i  - G i - 1 . i  

= Epi- 

E i -  1 , i  Epi-Ipi + viT,. (1 1) 
Note that the addition of an integer number of clock cycles 
to the clock phase shift has the effect of changing the 
frame-of-reference from the current local time zone of 
phase p i  - to the local time zone of phase p i  that begins 
vi cycles after its next local time zone. In particular, for 
vi = 0 the phase shift reverts to its earlier definition. 

2.3. Open-Ended Pipelines 
Characterizing open-ended pipelines using the above 

model is a simple matter of replacing the departure time 
equations for virtual stage 0 with specijied values that rep- 
resent the pipeline boundary conditions. Specifically, the 
following equations for signal departure times from stage 
0 

(12) 

(13) 

do = max (ao, T, - TPO) 

Do = max (Ao, T, - TPJ 

are simply replaced by 

do = do (14) 

Do = D o  (15) 

31ndex arithmetic in what follows will always be modulo n.  To keep the 
equations from becoming too cluttered, the mod operator will be dropped 
and assumed to be implied. 

where do, and denote the specified signal “departure” 
times from the pipeline source to its first stage. This im- 
mediately leads to the following amval time equations at 
the first pipe stage: 

(16) 

(17) 
The equations for signal amval times at virtual stage 0 

(18) 

(19) 

which capture the signal propagation delays through the 
pipeline “environment” are dropped altogether. Instead, 
the corresponding actual signal departure times computed 
from the model equations: 

a1 = do + 61 - EOJ 

A1 = Do + A1 - Eo.1. 

a, = 4-1 + 6 0  - E,- l ,O 

A0 = 0,- 1 + A 0  - G, - 1.0 

d , - l  = max ( ~ ~ - 1 ,  T, - TPn-J 

= max ( 4 - 1 ,  T, - TPn-J 

(20) 

(21) 
:re checke9 against the required signal departure times, 
d,- and 0,- from the last pipe stage (stage n - 1) to 
the pipeline environment. 

The specification of signal times entering stage 1 and 
leaving stage n - 1 represents a decoupling of the signal 
propagation equations around the closed pipeline and leads 
to an easier cycle time optimization problem. However, 
by explicitly including virtual stage 0 in the pipeline 
model, we have the added flexibility of optimizing the 
operation of the pipeline within its environment. Either 
way, it should be clear that the closed pipeline model 
above encompasses open-ended pipelines as a degenerate 
special case. The remainder of the paper focuses on 
studying closed pipelines. 

111. PIPELINE OPERATION MODES 
Allowing multiple clock cycles for signals to propagate 

through a single stage has the potential of reducing the 
cycle time below what is possible with single-cycle prop- 
agation. However, for such operation to be feasible the 
minimum combinational delay of the stage must be suffi- 
ciently large to maintain adequate temporal separation be- 
tween consecutive waves of signals (see Fig. 3). Reliance 
on logic delay, rather than on synchronizing elements 
alone, to prevent interference between consecutive data 
waves has been dubbed wuve pipelining [ 101. This phe- 
nomenon will occur in any pipe stage for which vi > 0. 
We thus refer to vi as the degree of wuve pipelining in 
stage i .  

The number of operations concurrently in process in an 
n-stage pipeline need not be equal to n. Depending on the 
nature of the clocking scheme, the differences between 
the minimum and maximum delays in each stage, and the 
distribution of the maximum delays over all stages, it may 
be possible to operate the pipeline so that the number of 
signal waves simultaneously traveling around the closed 
pipeline is less than or greater than n. We capture this 
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IV. OPTIMAL CYCLE TIME CALCULATION 
Subject to the simplifying assumptions made above, 

namely Epi- Ipi = T, and vi = v, the phase shift from stage 
i - 1 to stage i in (11) can be expressed simply as 

(24) 
The timing model of the pipeline can now be conveniently 
viewed as consisting of three distinct sets of constraints: 

G i - 1 . i  E (1 + v)T,. 

Fig. 3. Wave pipelining. 

0 1 1  L 
O2 I L 

L $3 I-= 
I I 

I 

I L 

k = l  k > l  
Fig. 4. Clocks with maximum possible phase shift between phases. 

notion by introducing C, the concurrency in the pipeline, 
which can easily be related to the clock phase shifts and 
the degrees of wave pipelining by 

- n-1 n- 1 
1 

C = - C Ep,-Ip, + C vi.  
T, i = O  i = O  

C can be thought of as the number of virtual pipeline 
stages. Note that in a closed pipeline C must be an inte- 
ger; hence CEp,-lp, must be an integer multiple of T,. A 
particular level of concurrency may be achieved by a va- 
riety of combinations of clocking schemes and wave 
pipelining. For example, a concurrency of 4 in a 4-stage 
pipeline may be obtained by a 4-phase clock where each 
pipe stage is allocated a fraction of the clock cycle such 
that CEp,-lp, = T,, and Cvi = 3. Alternatively, CEp,- Ip, = 
2T,, and Cui = 2. 

We limit our attention in this paper to those clocking 
schemes which maximize C for a given level of wave 
pipelining, namely those for which the sum of the clock 
phase shifts around the pipeline stages is equal to nT,. 
Recalling that each of the individual phase shifts is at most 
one clock cycle, this restriction implies that Ep,- ,p, = T, 
for each of the n stages. Clocking schemes for which this 
restriction applies include single-phase clocks and the re- 
stricted form of multiphase clocking shown in Fig. 4, 
which will be referred to as coincident multiphase clock- 
ing since the latching edges of all k phases coincide in 
time.4 For simplicity in the equations and analysis that 
follows we let vi = v for all stages. The methods used, 
however, do handle the general case where vi differs from 
stage to stage. 

With these restrictions, the concurrency C becomes 

C = (1 + v)n. (23) 

Pulsewidth Constraints expressed by (2) and (3). 
Long-Path (Late-Signal ) Constraints involving the 
late arrival and departure times and expressed by the 
setup inequalities (6), the propagation equations (lo), 
and the synchronization equations (8). 
Short-Path (Early-Signal) Constraints involving 
the early arrival and departure times and expressed 
by the hold inequalities (5) , the propagation equa- 
tions (9), and the synchronization equations (7). 

Subject to the above constraints, we outline in this sec- 
tion procedures for obtaining the minimum cycle time for 
latch-controlled pipelines for the following three clocking 
schemes: 

1) a coincident n-phase clock, 
2) a general form of single-phase clocking, 
3) a restricted form of single-phase clocking. 

In all three cases, the calculation of the optimal cycle time 
starts by finding expressions for the early and late arrival 
times at stage i in terms of the clock variables and circuit 
delays. These expressions are then combined with the hold 
and setup requirements to obtain the short- and long-path 
constraints. In one case, restricted single-phase clocking, 
these constraints can be solved to yield a closed-form 
expression for the minimum cycle time. Numerical solu- 
tions are necessary in the other two cases. 

It should be noted that single-phase clocks are a special 
case of the more general coincident n-phase clocks. As 
such, the minimum cycle time possible with a coincident 
n-phase clock will always be less than or equal to that 
obtainable with a single-phase clock. Less obvious, 
though, is the fact that the solution space for the case of 
coincident n-phase clocks is convex whereas that for sin- 
gle-phase clocks may in fact be nonconvex or even dis- 
connected. While we do not envision that coincident 
n-phase clocks are likely to be used in practice, their study 
is theoretically important because they provide a lower 
bound on the minimum cycle times possible with single- 
phase clocks. 

4.1. Coincident n-phase Clocks 
A coincident n-phase clock is obtained by setting pi = 

i and is characterized by n + 1 variables: the cycle time 
T,, and the n independent phase widths To, - - - , T,, - I .  

It is important to note that the freedom to choose a differ- 
ent phase width for each pipe stage is the key to the rel- 
atively simp1e procedure Of the coincident 
n-phase case. In particular, it is always possible to choose 

4For general multiphase clocks, the existence of fractional phase shifts 
(i.e., phase shifts smaller than a full cycle) limits C E , , _ , ,  to s ( n  - 1) 
clock cycles. 
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the phase widths so that the synchronization equations (7 )  
and (8 )  are simplified to: 

(25) d .  = D .  = T - T. I C 1  

This simplification can be justified as follows: 

Suppose that Di > T, - & for some stage i at the 
optimal solution. Then Di = Ai > T, - &. Since 
changing Ti can only directly affect the departure times 
from stage i, it should be obvious that & can be de- 
creased until Di = Ai = T, - & without affecting the 
optimal cycle time. Note also that decreasing I;: can only 
increase the margin by which the hold requirement is 
satisfied at stage i + 1. 

The above simplification is significant because it re- 
moves the coupling, inherent in the latch synchronization 
model, between the departure and arrival times. As will 
become apparent later, this coupling is the primary source 
of complexity and nonconvexity in the general single- 
phase case. Specifically, the optimality of the coincident 
n-phase solution is unchanged if we replace the synchro- 
nization equations (7) and (8 )  and their troublesome max 
function with the simple equalities (25) .  This in turn 
makes it possible to express the feasible region as a set of 
linear inequalities that define a convex space. 

Arrival Times: Substituting (24)  and (25)  in (9 )  and 
(lo), we can express the arrival times at stage i as: 

ai = T, - q-1 + 6; - (1 + v)TC 

= 6; - & - I  - UT, (26) 
and 

Ai = T, - K - 1  + A; - (1 + v)T,  

(27)  - - A; - 6-1 - vT,. 
In addition, from ( 8 ) ,  signals must arrive at the latest by 
the rising edge of the corresponding clock to satisfy (25):  

Long-Path Constraints: Combining (27)  with the 
Ai I T, - Ti. (28) 

setup requirement ( 6 ) ,  yields 

Combining (27)  with (28)  leads to another constraint: 
(1 + v)T, + Ti-1 2 Ai + Si. 

(1 + v)T,  + K - 1  - & 2 A;. 

(29) 

(30) 
Short-Path Constraints: Substituting (26)  into the hold 

(31) 
Solution Procedure: The feasible region for coinci- 

dent n-phase clocking is defined in the (n + 1)-dimen- 
sional space of clock variables by 5n linear inequalities: 

requirement (5 )  yields 

UT, + 6-1 I 6i - H;. 

2n long-path inequalities (29) and (30), 
n short-path inequalities (31), 
2n minimum pulse-width inequalities (2 )  and (3). 

The minimum cycle time can be now be found by solving 

quired for certain types of latches, (29)  is subsumed by 
(30) and the total number of constraints in the linear pro- 
gram can be reduced to 4n. 

4.2. General Single-phase Clock 
When the clock phase widths at all pipe stages are 

forced to be equal, it may no longer be possible to satisfy 
the simplified latch synchronization equation (25);  in- 
stead, the general model equations ( 7 )  and (8 )  must be 
invoked. It is possible under these conditions for some 
early signals to simply flow through the latches without 
having to wait for the enabling clock edge (Le,, ai > T, 
- TPJ, effectively rendering the latches redundant. Such 
an operation mode has been termed “aggressive” [3] 
since it allows the latches to be transparent not only for 
the slow signals but also for the fast signals. In this case, 
the space of feasible solutions may become nonconvex. If 
we denote the feasible regions corresponding to pulse- 
width constraints by RP, long-path (late-signal) con- 
straints by RL,  and short-path (early-signal) constraints by 
R E ,  then the overall region of feasibility is simply RP f l  
R L  fl R E .  These regions are shown in Fig. 5 and are de- 
rived next, except for RP which follows trivially from ( 2 )  
and (3). 

Arrival Times: The solution in the case of a single- 
phase clock is considerably more complicated because of 
the coupling between signal arrival and departure times 
through the latch synchronization equations (7) and (8 ) .  
Unlike the coincident n-phase case, obtaining an expres- 
sion for the arrival time at stage i requires the substitution 
of the synchronization and propagation equations of all 
pipe stages. Thus, the early arrival time at stage i is cal- 
culated by repeated application of (9 )  and (7 )  and alge- 
braic simplification. Setting pi = 1 to represent a single- 
phase clock, we obtain the following expression for the 
early arrival time at the input to synchronizer i: 

U; = dj-1 + 6i - (1 + v)T, 

= IIMX ( U ; - ] ,  T, - TI) + 6i - (1 + v)T, 

= max (ai - + 
= max ( d i d 2  + 6;- + 6i - (2 + 2v)T,, 

- (1 + v)T,, ai - TI - UT,) 

6; - TI - UT,) 
= max (max (ai-2,  T, - T I )  + 6; -  1 + 6, 

- (2  + 2v)T,, 6i - TI - UT,) 

= max (aib2 + + 6; - (2 + 2v)T,, ai- 1 

+ 6i - TI - (1 + 2v)T,, 6i - TI - UT,) 
= . . .  
= rnax (ai + + * * + 6; - (n + nv)T,, 

6 i - ,+1  + * * + 6i - TI 

- (n - 1 + nv)T,, 

* * * , 6i-1 + 6; - TI - (1 + 2v)TC, 

a linear program. Note that if Ti 2 Si, as might be re- 6i - TI - vT,) 
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Fig. 5 .  Single-phase feasible regions for latches (illustrated for v = 0). (a) 
Pulsewidth constraints. (b) Long-path constraints. (c) Short-path con- 
straints for stage i. 

which can be expressed more conveniently as: 

(32)  
Similarly, the late arrival time at stage i, calculated from 
(10) and (8), is: 

Ai = max [ A ,  + ( i; A j )  - (n + nv)T,, 
j = i - n + l  

(33)  
Note that the max functions in these expressions involve 
n + 1 arguments in which, except for the first argument, 
the only variables are the two clock variables T, and T I .  

Long-Path Constraints: Expression (33)  implies the 
following n + 1 inequalities: 

A, 2 Ai + ( A j )  - (n + 
j = i - n + l  

l = O ; . . , n - l .  

Eliminating Ai from the first inequality, 
obtain the following lower bound on T,: 

1 

T, 2 Aj 
n ( l  + V )  j = i - n + ~  

(35) 
we immediately 

, n - 1  - 

which confirms the intuition that the cycle t ige cannot be 
less than the average pipeline stage delay, A, when Y = 
0. In general, the C clock cycles during which one signal 
wave completes its tour of the pipeline must not comprise 
less total time than the sum of the maximum propagation 
delays around the pipeline. 

Combining each of the remaining n inequalities with 
the setup constraint (6) we eliminate A, to obtain: 

(37)  
While the physical interpretation of each of these in- 
equalities is not as obvious as that of (36) ,  it is still rather 
simple: the time available for a signal to propagate down 
the (2  + 1 )  pipe stages ending at stage i, and to be cor- 
rectly setup for latching at stage i, is ( 1  + I )  (1 + v) clock 
cycles plus the phase width TI which represents the “ex- 
tra” time due to the use of level-sensitive latches. Since 
each of these inequalities must be true for all n pipe stages, 
we obtain: 

l = O , - . -  , n - l .  (38)  

Thus the long-path constraints have been reduced to the 
n + 1 inequalities in (36)  and (38)  which together define 
a convex set in the T, /Tl  solution space as shown in Fig. 
Xb). 

Short-Path Constraints: Proceeding as we did for the 
late amval time at stage i, we obtain the following in- 
equalities that must be satisfied by the early arrival time: 

(39) 

r /  i 1 

1 = 0,  * - *  , n  - 1 .  (40) 
The first of these is redundant since it is subsumed by the 
corresponding max-delay inequality (34) .  The remaining 
n inequalities in (40)  may now be combined with the hold 
requirement ( 5 )  to eliminate a, and yield the set of short- 
path constraints. A convenient way to obtain this set is to 
derive its complement, namely the set of constraints un- 
der which the hold requirements are violated, and then to 
invoke De Morgan’s Law. Specifically, the hold violation 
region for stage i is defined by the set of n inequalities: 

1 Hi > ai 2 [ ( 6,) - TI - ( I  + v + lv)T, , 
j = i - l  

which, upon elimination of a,, leads to the following n 
hold violation conditions: 
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Introducing Zf to represent the hold violation region for 
stage i ,  where E stands for early signal (short path), (42) 
can equivalently be expressed as 
- R F  = Efo n E t l  n - - n E t l  n - - - n E t n p 1  

(43) 
where zfl denotes the region of feasibility for the lth in- 
equality in (42). By applying DeMorgan’s Law to the set 
intersection equation (43), we obtain 

R f  = Rfo U Rf1 U * . .  U R& U * . -  U R t n - l  

(4) 
Thus, the desired set of short-path constraints is 

(1 + v + E V ) T ~  + I ( j + - l  a j )  - Hi 

for at least one 1 E (0, - - - , n - l }  (45) 
Note that, unlike the corresponding long-path inequal- 

ities (38) which must all be satisfied, the above set of n 
short-path inequalities is satisfied if at least one of them 
is satisfied. In other words, the feasible region defined by 
the set of n inequalities in (38) is the intersection of n 
separate (linear bounded) convex regions, whereas that 
defined by the inequalities in (45) is the union of n sepa- 
rate (linear bounded) convex regions. This in turn implies 
that while the region defined by (38) is guaranteed to be 
convex, the region defined by (43 ,  for each i ,  is guar- 
anteed to be nonconvex, as shown in Fig. 5(c). 

Solution Procedure: Denoting the overall region of 
feasibility by R,  it can be conveniently expressed as: 

(46) R = RP f l  RL fl R t  fl - - - n R f - , .  

straints, or we reach the other end of the minimum pulse 
width region (Tl = wl) without satisfying all the short- 
path constraints. If the latter obtains, the problem is in- 
feasible. A detailed description of the geometric solution 
approach outlined here can be found in [ 121. 

4.3. Restricted Single-phase Clock 
A conservative application of single-phase clocking is 

to require that no hold times be violated even if the early 
signal departure from each latch occurred at the earliest 
possible time. This is equivalent to conservatively assign- 
ing di to its worst case value by using di = T, - Tl in 
place of the general early signal synchronization equation 
(7) even when ai > T, - T I .  This restriction restores con- 
vexity to the region of feasible solutions and leads to a 
closed-form expression for minimum cycle time. 

Specifically, since the di = T, - Tl part of (25) is sat- 
isfied, the short-path constraints can be obtained from (31) 
by first setting Ti - = T I ,  leading to 

vT, + Ti I Si - Hi (47) 

vT, + Tl I min (Si - Hi) (48) 

which must be satisfied for all i ,  resulting in 

0 si s ( n  - 1) 

which corresponds to a convex region. Notice that this 
simplified short-path constraint can also be obtained from 
(45) by requiring it to be satisfied for 1 = 0, thereby 
shrinking R f  by extending the leftmost boundary edge 
down to the Tl axis and removing the other edges. 

When (48) is combined with the long-path constraints 
(36) and (38), and the pulse-width constraints (2) and (3), 
we obtain the following expression for the minimum cycle 
time: 

Due to the nonconvexity of R f ,  R may be nonconvex or 
even disconnected. Examples of these cases are illustrated 
in Section V. In any case, assuming that R # 4, at the 
optimal solution one or more of the long-path constraints 
(36) and (38) must be active (satisfied as an equation). 
This observation forms the basis for a directed-search al- 
gorithm to find the minimum cycle time. Basically, the 
search begins by finding the smallest possible cycle time 
that satisfies the minimum pulsewidth and long-path con- 
straints ( R p  n RL).  Except for the degenerate case where 
the vertex of R P  lies in RL, this point corresponds to the 
intersection of T, - TI = w1 and one of the n + 1 long- 
path constraints. This solution is now examined to see if 
it satisfies all of the short-path constraints. If it does, then 
it is optimal, otherwise we “climb” up the lower periph- 
ery of R L  until either we satisfy all the short-path con- 

(49) 

The feasibility of this minimum cycle time must be 
checked by substituting it, along with the corresponding 
phase width T I ,  in (48). If (48) is violated, then the re- 
stricted single-phase constraints have no feasible solu- 
tion. This check is necessary only if the minimum cycle 
time obtained in (49) is set by the third or fourth argu- 
ments of the max function; if it is determined by the first 
or second argument, (48) is automatically satisfied. 

4.4. Observations 
The solution space becomes nonconvex when the early 

arriving signals are allowed to flow through the latches 
unimpeded by the clock, i.e. when di > T, - Ti for one 
or more stages. If necessary or desired, this can be pre- 
vented by using di = T, - I;: instead of the actual syn- 
chronization equation di = max (ai, T, - I;:) and can be 
accomplished in two ways: 
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By using a restricted single-phase clock which as- 
sumes that the early signals always start flowing 
through latches on the enabling clock edge even 
though they may not actually start their propagation 
until after the clock edge. This leads to safe though 
not generally minimum cycle times. 
By using a coincident multiphase clock which per- 
mits the individual phase widths to be adjusted so 
that di = Di = T, - actually occurs at every latch. 
This choice involves more costly clock generation 
and distribution, but achieves the minimum possible 
cycle time of any coincident clocking scheme. 

V. EXAMPLES AND RESULTS 
We developed a computer program pipeT, which deter- 

mines the optimal cycle time for n stage pipes. pipeT, 
reads in the pipeline parameters (number of stages, stage 
delays, setup and hold times, and wave pipelining param- 
eters) and produces the optimal clock schedules and sig- 
nal waveforms for general single-phase, restricted single- 
phase, and coincident n-phase clocking using latches. 

In this section we illustrate the use of pipeT, on three 
pipeline examples to highlight some of the issues in pipe- 
line synchronization. The results are shown in Figs. 6- 
12. In each figure we show: 

0 

0 

0 

The 

The pipeline parameters (minimum and maximum 
delays, hold and setup times, wave pipelining pa- 
rameter, and minimum pulse width) 
The region of feasible solutions, in the Tc/T l  space, 
for general single-phase clocking (part (a) in each 
figure). 
The optimal clock waveform(s), and corresponding 
signal waveforms at all synchronizer inputs, for: 

general single-phase clocking (part (b)), 
restricted single-phase clocking (part (c)), 
single-phase clocking with negative edge-trig- 

coincident n-phase clocking (part (e)). 
gered flip-flops (part (d)), 

clock and signal waveforms in these figures are de- 
picted using the notation introduced in Fig. 2. 

The flip-flop solutions are obtained by substituting the 
synchronization equations d; = Di = T, in the signal prop- 
agation equations and combining the results with the hold 
and setup constraints. This procedure is analogous to those 
used in Section IV for latch synchronization; however, it 
is much less involved due to the simplicity of the flip-flop 
synchronization equations, and leads to the following 
simple expression for minimum cycle time 

subject to the following feasibility conditions: 
v = 0: 6; 2 Hi, fori  = 0, - - - , n - 1 

v 2 1: min (y) 2 m y  (-) A; + S; 
I l + v  . 

The phase widths Tpi can be chosen arbitrarily as long as 
they satisfy the minimum pulse width constraints. By 
comparing (49) with (50) we see that operation at the ideal 
latch cycle time of 

A 
l + v  

is never possible with flip-flops. 
Example I :  The first example is a 4-stage pipeline with 

an uneven distribution of stage delays. Optimal clock 
schedules were computed for two cases: (a) H1 = 2.0, 
and (b) HI = 2.5. In both cases, v = 0 and w = 1. The 
results are shown in Figs. 6 and 7 and are summarized in 
Table I. Examination of these results leads to the follow- 
ing observations: 

- 

(51) 

The general single-phase feasible region in Fig. 6 is 
nonconvex. It consists of the shaded area in the 
T, /Tl  plane as well as the line segment AB. 
The optimal general single-phase cycle time is the 
same as the optimal coincident 4-phase cycle time 
reaching the ideal value @/(l  + v) = lo), and is 
substantially lower than the restricted single-phase 
optimum (16.0) and the flip-flop optimum (18.0). 
Although there are always exactly four signal waves 
in the pipeline in the general single-phase and coin- 
cident 4-phase solutions, during each clock cycle 
there are two waves traveling in stage 0 (from t = 
2.0 to t = 8.0) and in stage 2 (from t = 2.0 to t = 
4.0). This limited form of wave pipelining in par- 
ticular stages occurs even though v = 0 since the 
delays of both stages 0 and 2 are greater than the 
cycle time. Examination of the signal waveforms 
suggests another way to determine if a given stage 
is wave pipelining: stage i will “contain ” 2 or more 
waves of data in every clock cycle from t = D; - to 
t = A; i f  Di - < A;; otherwise at most one wave 
can be traveling in stage i. 
When H I  is increased from 2.0 to 2.5, the general 
single-phase feasible region shrinks and becomes 
convex (Fig. 7). Now, the general single-phase and 
the restricted single-phase solutions are identical 
(Tc,min = 16.5), and both are larger than the coin- 
cident 4-phase solution (Tc,min = 10.125). Note that 
due to the nonconvexity of the general single-phase 
feasible region, a 0.5 ns change in the hold time of 
stage 1 causes a 6.5 ns change in the optimal cycle 
time. In contrast, the restricted single-phase and 
coincident 4-phase optima changed by 0.5 ns and 
0.125 ns, respectively, in response to the same 0.5 
ns change in H 1 .  The flip-flop solution did not 
change. 

Example 2: The second example is a modification of 
the first in which the delay of stage 1 has been increased 
from 4.0 to 8.0. We study the effect of changing the hold 
time of stage 2 from 6.0 to 7.5 in 0.5 ns increments. The 
results are shown in Figs. 8, 9, 10, and 11, and are sum- 
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I i I 6, Ai Hi Si I 

3 1 8.0 8.0 2.0 2.0 
U = 0, w = 1 

(e) (d) 
Fig. 6. Example 1, Case (a)--HI = 2.0 (a) General single-phase feasible 
region (latches). (b) Optimal general single-phase solution (point A). (c) 
Optimal restricted single-phase solution (point B). (d) Optimal flip-flop so- 
lution (point C). (e) Optimal 4-phase solution. 

6i A; Hi Si 

u = O , w = l  
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8 125 

-0 125 
Stage 11 ta9 r(-  --h* I - 2 5  

0. 
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0 4 n ~ . 1 2 5  

a- 
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2P 
stage 3 
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n 
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Stage 0 I U 

Stage11 
14 5 

2 5  

10 5 

(b) 
n 

15 16 5 
e1 

stage 0 I m 
Stage 1 I . I -4-1 
stage 2 

Stage 3 

14.5 

2 5  

6 5  

(C) 
n 

17 18 
01 

naq 
lfi 

Stage 0 I 

Stage 1 1 

Stage 2 I-- 
4 

19 

(e) ( 4  
Fig. 7. Example 1, Case (b)--HI = 2 . 5 .  (a) General single-phase feasible 
region (latches). (b) Optimal general single-phase solution (point A). (c) 
Optimal restricted single-phase solution (point B). (d) Optimal flip-flop so- 
lution (point C). (e) Optimal 4-phase solution. 
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TABLE I 
SUMMARY OF RESULTS FOR EXAMPLE 1 (ALL TIMES IN UNITS OF 

NANOSECONDS) 

G 1-Ph' R 1-Ph' C 4-Ph3 F P  
-- 

Case HI T, TI Tc TI Tc Tc 

(a) 2.0 10.000 8.000 16.000 2.000 10.000 18.000 
(b) 2.5 16.500 1.500 16.500 1.500 10.125 18.000 

'Optimal general single-phase solution 
'Optimal restricted single-phase solution 
'Optimal coincident 4-phase solution 
4 ~ p t i m a ~  flip-flop solution 

Ai i 6i 

Hi  

Si 1 0 16.0 16.0 2.0 2.0 
8.0 8.0 2.0 2.0 

8.0 8.0 2.0 2.0 
2 12.0 12.0 (601 2.0 

U = 0, U) = 1 

r , -  -1 

stage 0 - 
stage 1 

14 Stage 2 
Stage 3 I 1 .  *cs x .I 

12 4 

10 (b) 

+ I  n 
17 18 

stage 0 I m 
Stage 1 I 

stage 2 I 

16 

8 

(e) ( 4  

Fig. 8. Example 2, Case (a)-H, = 6.0. (a) General single-phase feasible 
region (latches). (b) Optimal general single-phase solution (point A). (c) 
Optimal restricted single-phase solution (point B). (d) Optimal flip-flop so- 
lution (point C). (e) Optimal 4-phase solution. 

marized in Table 11. The following additional observa- 
tions can be made: 

1) The general single-phase feasible region is noncon- 
vex (Fig. 8), and becomes disconnected when H2 is 
increased to 6.5 and 7.0 (Fig. 9 and Fig. 10). In 
particular, one of the disconnected subregions 
shrinks to a point. When H2 is increased further to 
7.5, the feasible region becomes convex (Fig. 1 1). 
Further increases in H2 reduce the size of the fea- 
sible region, until it vanishes completely and the 
problem becomes infeasible. 

2) 

3) 

The general single-phase solution is not unique. In 
fact, for HI = 6.0 and HI = 6.5,  the same optimal 
cycle time (1 1 .O) can be achieved with a range of 
values for Tl. This situation will arise whenever the 
lower bound constraint on T, given by (36) is active 
(this lower bound corresponds to the horizontal line 
segment). 
The restricted single-phase solution is now exhib- 
iting wave pipelining in some stages. In fact, only 
the flip-flip solution is free from wave pipelining 
(recall that v = 0 in these experiments). 
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U = 0, w = 1 

6i Ai H, Si 

8.0 8.0 2.0 2.0 
u = O , w = l  
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1 1  P 11 

6 11 

6 
n 1 h W ; i t U  I 17 18 

Stage i r e1 

Stage 0 I w 
Stage 1 

stage 2 L 

Stage 3 I 

18 '3 F~ 

v1 
Stage 2- 

Stage 3-1 
12 

4 8 

(e) (d) 
Fig. 10. Example 2, Case (c)--H2 = 7.0. (a) General Single-phase feasi- 
ble (latches). (b) Optimal general single-phase solution (point A). (c) Op- 
timal restricted single-phase solution (point B). (d) Optimal flip-flop solu- 
tion (point C). (e) Optimal 4-phase solution. 
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16 

stage 1 I h -  ..6- - 
Stage 2 L I . J e C d  

Stage 3 1 L. A.-- 
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12 

8 

(e) ( 4  
Fig. 1 1 .  Example 2, Case (d)--H2 = 7.5. (a) General single-phase feasi- 
ble region (latches). (b) Optimal general single-phase solution (point A). 
(c) Optimal restricted single-phase solution (point B). (d) Optimal flip-flop 
solution (point C). (e) Optimal 4-phase solution. 

TABLE 11 
SUMMARY OF RESULTS FOR EXAMPLE 2 (ALL TIMES IN UNITS OF 

NANOSECONDS) 

5) Note that, for this as well as for the previous ex- 
ample, the optimal cycle time for general single- 
phase clocking is equal to either the optimal coin- 

G 1-Ph' R I-Ph2 C4-Ph3 F P  cident multiphase cycle time or the optimal re- 
stricted single-phase cycle time. This is not true in 
general, as the last example demonstrates. 

-- 
Case H2 T, TI Tc TI Tc Tc 

(a) 6.0 11.000 [7.0, 8.01 12.000 6.000 11.000 18.000 
(b) 6.5 11.000 17.0, 7.51 12.500 5.500 11.000 18.000 Example 3: The third example is for a 3-stage pipeline 
(c) 7.0 11.000 7.000 13.000 5.000 11.000 18.000 
(d) 7.5 13.500 4.500 13,500 4,500 11,167 18.000 in which, unlike the first two examples, the minimum de- 

lays for some stages are strictly less than the correspond- 
'Optimal general single-phase solution 
*Optimal restricted single-phase solution 
30ptimal coincident 4-phase solution 
40ptimal flip-flop solution 

4) The 0.5 ns increase in H2 from 7.0 to 7.5 (cases c 
and d) causes a 2.5 ns increase in the general single- 
phase optimum, a 0.5 ns increase in the restricted 
single-phase optimum, and a one-sixth ns increase 
in the multiphase optimum; the flip-flop optimum 
does not change. This is consistent with the earlier 
observation in example 1. The curious one-sixth ns 
increase in the multiphase case is readily explained 
in terms of the dual solution of the linear program 
[13] used to find the optimal cycle time. 

ing maximum ddays. The results are shown in Fig. 12 
and suggest the following additional comments: 

1) As was just noted, the optimal general single-phase 
cycle time (13 ns) is strictly less than the restricted 
single-phase optimum (14 ns) and strictly greater 
than the coincident 3-phase optimum (10 ns). 

2) The optimal coincident 3-phase cycle time (10 ns) 
is greater than the average maximum stage delay (E  
= 9.33 ns) due to the discrepancy between the min- 
imum and maximum stage delays. Specifically, the 
signal arriving at stage 0 must wait 2 ns before be- 
ginning to propagate to stage l. Averaged over the 
three pipe stages, this wait time accounts for the ob- 
served difference of 0.67 ns (10 - 9.33). 
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3 1  

I i I 6i A; Hi S. 1 
7.0 2.0 2.0 

v = o , w = 2  

(e) ( 4  
Fig. 12. Example 3. (a) General single-phase feasible region (latches). (b) 
Optimal general single-phase solution (point A). (c) Optimal restricted sin- 
gle-phase solution (point B). (d) Optimal flip-flop solution (point C). (e) 
Optimal 3-phase solution. 

VI. CONCLUSIONS AND FUTURE WORK 
We have studied the problem of minimizing the cycle 

time for an n-stage pipeline under a variety of clocking 
conditions. This study clarified the relationships among 
concurrency, wave pipelining, and clocking. It has also 
led to a closed-form expression for minimum cycle time 
under a restricted form of single-phase clocking. 

One of the important results of this study was discov- 
ering that even for single-phase clocks and simple circuit 
structures, the region of feasible solutions may be non- 
convex or even disjoint. One must conclude, therefore, 
that such phenomena can also occur in the case of multi- 
phase clocking of more complex circuits. Nonconvexity 
implies that slight variations in the circuit delays can cause 
large variations in the cycle time, leading to possible mal- 
function. Even more serious, a disjoint solution space 
poses problems of reachability (i.e., how do you start, 
stop and single-step the clock). In either case, trying to 
capitalize on the existence of such effects may lead to un- 
reliable circuit operation and “weird” circuit behavior. 
Both problems can be traced to exploiting the transpar- 
ency of latches forfast as well as slow signals to achieve 
lower cycle times. 

With the above in mind, practical solutions should in- 
clude only those clocking schemes whose feasible regions 
are convex, such as coincident multiphase and restricted 
single-phase clocks. Additional considerations, such as 
ease of clock generation and distribution, may further limit 
the range of options to just a few phases. The closed-form 
minimum cycle time expression for restricted single-phase 
clocking thus assumes greater significance as a bound on 
what is practically achievable. 

We have incorporated wave pipelining in the model but 
have not addressed issues such as startability and stop- 
pability (single-stepping). These issues remain as impor- 
tant open problems that must be solved before wave 
pipelining becomes viable. Finally, the above results do 
not take clock skew into account. We conjecture that clock 
skew, clock phase shifts, and wave pipelining can be in- 
tegrated into a unified model for clock design. 
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