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Abstract 

This paper describes a general framework for the retiming of sequential 
circuits using either single or multi-phase clocks and both edge-ttiggered 
flip-flops and level-sensitive latches. This framework is compared with 
previously published work on retiming. The potential for finding optimal 
retimings within this framework is discussed, and a set of heuristic retim
ing methods is presented. Finally, examples ofboth single and multi-phase 
retimings ofcircuits with level-sensitive latches are presented. 

1 Introduction 
Retiming. first described by Leiserson [1]. is a powerful method for the timing optimization 

of synchronous circuits. Retiming algorithms allow storage elements to be moved back and forth 
across logic in a circuit to minimize the cycle time or number of storage elements in the circuit. In 
[1], Leiserson described the original retiming model which he developed for optimizing single
phase, edge-triggered circuits and presented a set of efficient. well-characterized algorithms for 
rmding optimal retimings with respect to both cycle time and register count. In Leiserson's model, 
circuits are partitioned into logic blocks between which registers may optionally be placed (see 
Figure 1). Logic blocks are represented by nodes in a directed graph and the arcs connecting these 
nodes are labeled with the number of registers (w;j between the corresponding logic blocks. A 
retiming variable r(v.) is defined which relates changes in the latency of the calculation perfonned , 
at node Vi to the number of registers on the arcs coming into and out of the node. These retiming 
variables are then used as the independent variables in an optimization which seeks to minimize 
the circuit cycle time or the number ofregisters in the circuit. A key characteristic of these retiming 
variables is that their use in optimization guarantees that the number of registers around each loop 
in a circuit is constant. a condition which Leiserson shows to guarantee that circuit functionality is 
unchanged. 

However, a number of restrictions were made in Leiserson' s retiming methods to make the 
algorithms more tractable. These restrictions fall into two broad categories: 
1. 	Structural restrictions: In Leiserson's methods, the gate-level structure of a circuit is rlXed and 

storage elements are simply moved back and forth across gates in the circuit. As a result, the 
traditional retiming algorithms can miss many optimizations which can be performed when log
ic transformations are considered. 

2. 	Clockini restriction~: Leiserson assumes that a single-phase clock is used and that the storage 
elements are edge-ttiggered flip-flops. As such, his algorithms do not directly apply to mul
tiphase circuits or circuits using level-sensitive latches. 
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Clock Constraints 

pulse width constraints Tp~w 

Tc-Tp~w 

Combinational Propagation Constraints 

signal propagation into a· = minj 1 (d.+ OJ+ 0,H- E )l = ,n J I p.p.
synchronizer i 

Ai = maxj =1,n(Dj +d;+dii -Epp) 


Synchronizer Macromode1s 


setup and hold con-
 Ai~Tc-Si 
straints 

ai~Hi 

d. = Tflip-flop synchroniza
l C 

tion equations 
D. = T

l C 

latch synchronization = max.(ai, Tc - Tp)di 
equations 

D i = max(Ai, Tc - Tp) 

wire synchronization d·l = a·l 
equations 

D· = A.
l l 

Phase Shift Operator 

e· - e· if e· > e·E[z1111 1: l' J l 
C - (ej - ei), if ej ~ ei 

Table 1: Timing Model Summary 

o ~ is the Kronecker delta function which is equal to I whenever w. = 0 and zero otherwise. 
Combini~'g these with the combinational propagation equations gives ' 

a· = min._ 1 n(O Oa . +0.+ 0..)
l J -, Wj J J Jl 

A. = max.. 1 (0 _A .+d.+d ..)
l J = ,n wp··J J Jl 


To ensure correct circuit operation, we must have 


Ai~Tc-Si 

ai~Hi 

whenever w., > O. In Leiserson's model, the hold time constraints were neglected and syn
chronizer delays and setup times were assumed zero, leaving the following set ofconstraints to be 
satisfied: 

'Vi, Ai = max j =1, n(Ow pAj +d ji) 

'Vi, A i (1 - Ow .0) ~ T c, 
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To determine whether a retimed circuit can be run at a specified cycle time T , it is necesc 
sary only to compute the values ofA.using the fll'St constraint above and then verify that the second , 
constraint is satisfied. If the solution fails to satisfy the second set of constraints, then the critical 
paths that caused the setup violation can be shortened by retiming the last node in each path by +l. 
More aggressively, we can retime each node in the circuit for which Ai > Te' This is equivalent to 
one pass through Algorithm FEAS as described in [1]. The A.,variables correspond to the values 
~(l) computed by Leiserson's Algorithm CP. Ifafter iterating this procedure IV!- 1 times (IV! is the 
number of combinational nodes in the circuit), no feasible solution can be found, then no retiming 
exists and the FEAS algorithm terminates. Otherwise, the feasible retiming will be found. 

3 Multiphase Retiming Issues 
It is important to show that any timing optimization procedure does not alter the behavior 

of the circuit being optimized. To guarantee that a retiming would not change the function of a cir
cuit, Leiserson defined the retiming variables with the following set of equations: 

w,(i,)) = wi(i,j) + r{J) - r{J) 

where w(iJ) is the initial number of storage elements between nodes i andj and w (iJ) is 
the number of storage elements between them in the retimed circuit. Leiserson showed that ~s long 
asw/i,)) ~ 0, changes to the r variables would not affect a circuit's operation. The essence of the 
argument was that the total number ofregisters around every loop in a circuit must remain constant. 
With the addition of an extra vertex to represent the environment, enfon::ement of this condition 
guarantees equivalent circuit function. 

For multiphase retiming, we have a slightly more difficult problem. Instead of simply re
quiring the number of storage elements around a loop to be constant, we need to require that the 
latency around loops be constant, where we define latency as the number of clock cycles by which 
signals moving around the loops are delayed. Although the latency could be preserved under many 
less-restrictive constraints, for now we preserve it by requiring that the number of latches around 
each loop be kept constant and that the ordering of phase assignments around each loop is also pre
served. Note that this is subject to the assumptions about latch operation embodied in Table 1. 

Figure 2 illustrates a possible latency-related problem in multiphase retiming. When the 
node shown is retimed, there is no way to assign a phase to the new synchronizer without changing 
the latency through at least one of the branches going into the node. To retime this node, we must 
determine the appropriate clock phase to control the new synchronizer. Fortunately. for a signifi
cant class of retiming applications. it can be shown that this problem will not arise. A potentially 
powerful application of our multiphase retiming procedure is the conversion ofsingle-phase edge
triggered circuit design into implementations clocked with two-phase level-sensitive latches. Due 
to their simplicity, single-phase edge-triggered circuits are much easier to design and be under
stood by human designers. However, level-sensitive latches require significantly less area when 
implemented. and in fact, edge-triggered synchronizers are often implemented with a pairoflevel
sensitive latches connected in a master-slave configuration. Also, when level-sensitive latches are 

Figure 2 Phase Assignment Conflict in Multiphase Retiming 
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VO ~ VI fbI ~ V2 V3 V4 

Figure 3 Replacing IMPhase Flip-Flops with 2MPhase Latch Pairs 

used, time can be shared using the flow-through properties of a latch to average delays and reduce 
the cycle time. For these reasons, most VLSI circuits are implemented with level-sensitive latches 
as storage elements. These observations suggest a design procedure which begins with a single
phase edge-triggered circuit, replaces all of the edge-triggered devices with pairs of level-sensitive 
latches (compare Figure 1 and Figure 3), and then retimes these latches to reduce the cycle time 
below the optimum achievable with edge-triggered devices. An example of such a retiming is pre
sented in Section 6. 

Two-phase circuits created in this way are initially free of phase assignment conflicts; and 
since each retiming step must pull the same number ofsynchronizers through each input (or output) 
of the retimed nodes, no phase assignment conflicts can ever be introduced. 

4 A Procedure for Multiphase Retiming 
We are currently developing a new bottom-up heuristic retiming approach, and can now 

suggest a method for the retiming of multiphase circuits clocked by either edge-triggered or level
sensitive devices. Any retiming algorithm for timing optimization must have at least two parts: 

1.A means for determining the critical circuit delays. 
2.A method for modifying these delays by redistributing them throughout the circuiL 
For example, in the second of Leiserson's retiming algorithms (algorithm FEAS)[l], the 

CP algorithm is used to determine the minimum cycle time and identify critical paths in the circuiL 
To reduce these critical delays, Leiserson retimes nodes at the end of each critical path by +1, ef
fectively pulling a register from the end of the path forward, breaking the long path. In this section, 
we discuss the approach we take to each part of the retiming problem and in the following sections, 
present results obtained by applying our methods to two specific examples. 

4.1 Identifying Critical Delays 
We currently have two methods for determining the critical paths in a circuit. The dual so

lution of a linear program provides the sensitivity of the objective function (l') with respect to each 
constraint [8]. For those constraints which correspond to combinational propagation delays, these 
sensitivities are the local partial derivatives of the objective function with respect to the corre
sponding propagation delays. From this we observe that the constraints having nonzero dual values 
identify critical paths in a circuiL 

The non-zero dual variables identify a single set of constraints that is sufficient to bound 
the cycle time; however, they will not be able to detect the presence of parallel critical paths, each 
of which is sufficiently long to hold the cycle time to its current minimum. When such parallel crit
ical paths exist, shortening the one identified by the dual variables is not sufficient to reduce cycle 
time. Shortening this path will only cause another of these co-critical paths to hold the cycle time 
at its existing optimum. This path, however, can be identified by the new set of dual variables. This 
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suggests that we can overeome the problem ofmultiple parallel critical paths by simply shortening 
each path as it is identified until there are no more paths of that length and the cycle time is reduced. 

However, the slack variables produced in the LP solution also contain critical path infor
mation. We can identify critical paths by scanning the list of slack variables and marking as critical 
any path having zero slack. Also, if we do not use linear programming to fmd the optimum cycle 
time, we can still look at the slack variables generated by a timing verification procedure such as 
checkTc [7]. 

4.2 Redistributing Critical Delays 
Once we have identified which paths are critical, we need some procedure for modifying 

them to make them less critical. Delays should be retimed out of critical long paths to more easily 
allow setup constraints to be satisfied. Critical short paths can be lengthened to reduce the effect 
of hold constraints. If level-sensitive latches are used, a third type of critical path can exist which 
cannot be removed by retiming. These cririca/loops are cycles in the cireuit structure in which the 
late-arriving signal flows through every latch in the path. The only way to shorten such a loop is 
to actually remove logic from the loop (which retiming cannot do) or change the delay of gates in 
the loop. In our current work, we have focused only on shortening critical long paths. Two simple 
methods are available for doing so: to pull a storage element forward from the end of the path (re
time the last node in the path by +1), or push a storage element backward from the beginning of 
the path (retime the first node in the path by -1). Both operations act to shorten the critical path and 
can be seen as inverses of one another. 

Depending on the nature of the seareh space, it may be necessary to use both methods to 
find the truly optimal retimings; but unfortunately, they can also lead to back-and-forth oscillations 
when used together. It is much simpler to do as Leiserson did in the FEAS algorithm and consis
tently move latches in the same direction; while this does not eliminate the possibility ofoscilla
tions, it does focus the search and allow the algorithm to run in polynomial time. For general cir
cuits, however, it is an open question whether this method will produce polynomial-time solutions. 

5 Single-Phase Retiming 
To see an example ofour retiming techniques applied to level-sensitive latches, we applied 

them to Leiserson's correlator circuit (Figure 1) with all edge-triggered devices replaced by latch
es. For this example, we assumed that the minimum delays through each block were equal to the 
maximum delays, and that the setup and hold times for all latches were zero. We used the dual and 
slack variables to find critical delay paths and the delay modification heuristic we used was to re
time the beginning of each critical path by -1. For the initial cireuit, minTc obtained a minimum 
cycle time of 21, and the dual solution identified the path from latch 4 to latch 1 as critical. Exam
ining the slack variables showed that the path from latch 3 to latch 1 was also critical. As a result, 
vertices v3 and v4 were retimed to produce the next cireuit shown in Figure 4 The remaining steps 
in the retiming process are also shown in the figure, including the final retimed cireuit, which con
tains four latches and has a cycle time of 10. Note that this is the minimum cycle time obtainable 
for this cireuit by any method that does not modify the delays in the logic blocks or change cireuit 
latency: this minimum time can be attributed to any of the three critical loops in the circuit: V I-V, 
Vo. V1-V2-V6-V7-VO, and Vl-V2-V3-VS-V6-V7-VO' 

Note that at step 4 in the optimization process we saw a temporary increase in the cycle 
time. As a result, we cannot rely on simple observations of the cycle time to know when to stop 
retiming. In [1], Leiserson showed that a similar procedure to this would always fmd a feasible 
retiming within a well-defined number of steps, if one existed. However, this proof was for an al
gorithm for finding a retiming for a predetermined cycle time. Since we do not specify the cycle 
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V7 Tc= 18Tc= 21 

~ 


YO VI V2 V3 V4 vo VI «1», V2 V3 V4 ~ ~ ~ ~ ~ 

TC= 14 va Tc= 11 

~ 

YO ~ VI ~ V2 V3 ~ V4 YO ~ VI V2 V3 V4 

Tc= 14 V6 V5 TC= 11 

~ 
YO «1», VI V2 ~ V3 ~ V4 YO ~ V1 V2 V3 ~ V4 

~ 
TC= 10 V7 

YO ~ VI V2 V3 ~ V4 

Figure 4 Single-Phase Latch Retiming: Optimization Steps 

time for our retimings. we cannot directly use his result. Instead. we conjecture that a similar state
ment may be provable for our retimings: that the optimal retiming can be achieved after a bounded 
number of steps. For the current retiming algorithm. we have three possible stopping schemes: to 
stop retiming when (1) the minimum achievable cycle time (due to a critical loop) has been 
achieved, (2) the retiming has led to a previously-examined circuit (and further iterations will sim
ply continue in cycles). or (3) the retiming has proceeded for a significant number of iterations 
without improvement. 

6 Two-Phase Retiming 
In the previous example. we assumed that the minimum and maximum delays between 

latches were equal. For level-sensitive latches, this is the most optimistic assumption possible, as 
it provides the most insulation against hold violations and double clocking. On the other hand, the 
most conservative assumption would be to assume that the minimum delays between latches were 
zero. 

There are a number ofways to clock circuits with zero (or unpredictable) minimum delays. 
One simple solution is to use edge-triggered devices controlled by a single clock. Another solution 
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is to use single-phase level-sensitive latches and attempt to pad all of the minimum delays suffi
ciently to ensure that no signal can race through and cause hold violations. Yet another approach 
is to replace the edge-triggered synchronizers with pairs of level-sensitive latches controlled by 
two different clock phases, as described in Section 3. Ifwe do this, then it should be possible to 
retime logic into the space between latch pairs and reduce the cycle time below what is achievable 
using edge-triggered synchronizers. To demonstrate this, we chose to again look at Leiserson's 
correlator circuit, only this time assuming that the minimum delay between latches is zero. The 
steps in the retiming are shown in Figure 5. To see an example of a more sophisticated critical path 
than those which occurred in the one-phase solution, consider the state of the circuit at the next-to
last step in the retiming process. minTc finds the cycle time of this circuit to be 13.5 and the critical 
path extends from latch 3 to latch 8 along the path through latches 6 and 7. The critical path extends 
through latches 6 and 7 because the critical late signal passes directly through both latches without 
being held up. This path can be shottened by retiming venex v2 to produce the final retimed circuit. 
This circuit has a cycle time of 10, and since we know that this is the minimum cycle time achiev
able for this circuit, we stop. 

7 A Bounded Retiming Algorithm 
We are currently working to develop retiming algorithms that have well-established stop

ping criteria. Leiserson demonstrated that his FEAS algorithm would stop after a f'Inite number of 
steps (IVI- 1), by showing that each iteration of the algorithm was equivalent to a pass of the Bell
man-Ford algorithm for constraint satisfaction, which was itself guaranteed to find a solution (if 
one existed) after at most (lVI-I) iterations. Leiserson's optimization procedures worked by first 
calculating a list of all possible minimum cycle times for a circuit and then performing a binary 
search through the list in which he tested at each step whether a retiming existed to allow the circuit 
to run at the specified cycle time. The FEAS algorithm was one such algorithm for determining 
whether or not such a retiming existed. . 

For circuits clocked with level-sensitive latches, it is not so straightforward a matter to 
make an exhaustive list of the possible minimum cycle times of a circuit. Instead, we take an iter
ative approach that can be converges to the exact solution. 

The retiming algorithm which was demonstrated in the previous sections was an iterative 
one: it: repeatedly retimed critical long paths in a circuit in an attempt to reduce the circuit cycle 
time. The algorithm as demonstrated retimed only the last node in each critical path during each of 
its iterations. Ignoring the presence ofzero-delay nodes and applied to edge-triggered circuits, each 
such iteration is ~¢valent to one pass ofLeiserson's FEAS algorithm where the target cycle time 
is just less than T 1) , the minimum cycle time of the retimed circuit in the i-th iteration. 

Ifwe mak~ a small modification to the demonstrated procedure, we can guarantee that our 
new algorithm can be stopped IVI - I iterations after the optimum retiming has been found, where 
IVI is the number ofcombinational nodes in the retiming graph. The proposed algorithm is listed in 
Figure 6. Each iteration of the algorithm is a equivalent to a pass of the FEAS algorithm with a 
target cycle time just below the best cycle time found thus far. Ifno reduction in cycle time is seen 
after IVI - 1 iterations, then we know that we can stop, because we have just completed IVI - 1 iter
ations of the FEAS algorithm at the current target cycle time. We know that this algorithm will 
eventually f'md an optimal retiming because as soon as a feasible retiming is found for the current 
target cycle time, it stans again with a new (lower) target time. There are two differences between 
this algorithm and the one used in the previous two sections. The first is that it is continually trying 
to retime the current circuit to go faster than the best cycle time seen thus far, whereas the original 
algorithm only tried to beat the cycle time of the circuit in its current state. The second difference 
is that the previously demonstrated procedure only retimed nodes at the ends of critical paths; the 
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Figure 5 Two-Phase Latch Retiming: Optimization Steps 
proposed algorithm retimes all nodes whose outputs would cause a setup violation at the input of 
a subsequent storage element. The above-derived bound has currently only been proven for circuits 
clocked with edge-triggered flip-flops; however, we are currently working to prove that it also ap
plies for level-sensitive latches. 

8 Conclusions 
This paper has presented a general framework for the retiming of sequential circuits con

trolled by both edge-triggered and level- sensitive devices under complex clocking schemes. We 
have discussed and demonstrated a method for retiming that is successful for both single- and two
phase circuits with level-sensitive latches. We have also proposed a method with a well-defined 
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bestTc =minTc (cmrent..circuit) 

best-cilcuit = cmrent-cilcuit 

countdown =IVI - 1 

while (countdown C!: 0) do 


for all nodes with arrival times C!: bestTc - setuptime 
mark node to be retimed 


end for 

move latches forward past all marked nodes (retime the cmrent-circuit) 

ifminTc (cmrent-cilcuit) < bestTc 


bestTc =minTc (cmrent-cil'cmt) 

best-cilcuit = cmrent-cilcuit 

countdown =IVI - 1 


else 
countdown =countdown - 1 

end if 
end while 

Figure 6 Proposed Retiming Algorithm 

stopping criterion. We are currently working to fully automate these methods within the minTc 
software framework. 
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