
TAU 92, March 92

Multiphase Retiming Using minTc 1

Timothy M. Burks 2 Karem A. SakaUah Trevor N. Mudge

Department of Electrical Engineering and Computer Science

The University of Michigan

Ann Arbor, MI 48109

Abstract

This paper describes a general framework for the retiming of sequential
circuits using either single or multi-phase clocks and both edge-ttiggered
flip-flops and level-sensitive latches. This framework is compared with
previously published work on retiming. The potential for finding optimal
retimings within this framework is discussed, and a set of heuristic retim
ing methods is presented. Finally, examples ofboth single and multi-phase
retimings ofcircuits with level-sensitive latches are presented.

1 Introduction
Retiming. first described by Leiserson [1]. is a powerful method for the timing optimization

of synchronous circuits. Retiming algorithms allow storage elements to be moved back and forth
across logic in a circuit to minimize the cycle time or number of storage elements in the circuit. In
[1], Leiserson described the original retiming model which he developed for optimizing single
phase, edge-triggered circuits and presented a set of efficient. well-characterized algorithms for
rmding optimal retimings with respect to both cycle time and register count. In Leiserson's model,
circuits are partitioned into logic blocks between which registers may optionally be placed (see
Figure 1). Logic blocks are represented by nodes in a directed graph and the arcs connecting these
nodes are labeled with the number of registers (w;j between the corresponding logic blocks. A
retiming variable r(v.) is defined which relates changes in the latency of the calculation perfonned ,
at node Vi to the number of registers on the arcs coming into and out of the node. These retiming
variables are then used as the independent variables in an optimization which seeks to minimize
the circuit cycle time or the number ofregisters in the circuit. A key characteristic of these retiming
variables is that their use in optimization guarantees that the number of registers around each loop
in a circuit is constant. a condition which Leiserson shows to guarantee that circuit functionality is
unchanged.

However, a number of restrictions were made in Leiserson' s retiming methods to make the
algorithms more tractable. These restrictions fall into two broad categories:
1. 	Structural restrictions: In Leiserson's methods, the gate-level structure of a circuit is rlXed and

storage elements are simply moved back and forth across gates in the circuit. As a result, the
traditional retiming algorithms can miss many optimizations which can be performed when log
ic transformations are considered.

2. 	Clockini restriction~: Leiserson assumes that a single-phase clock is used and that the storage
elements are edge-ttiggered flip-flops. As such, his algorithms do not directly apply to mul
tiphase circuits or circuits using level-sensitive latches.

1. This work was supported in part by NSF grant MIP-9014058.
2. T. Burks is supported by a DoD NDSEG fellowship.

1

Clock Constraints

pulse width constraints Tp~w

Tc-Tp~w

Combinational Propagation Constraints

signal propagation into a· = minj 1 (d.+ OJ+ 0,H- E)l = ,n J I p.p.
synchronizer i

Ai = maxj =1,n(Dj +d;+dii -Epp)

Synchronizer Macromode1s

setup and hold con-
 Ai~Tc-Si
straints

ai~Hi

d. = Tflip-flop synchroniza
l C

tion equations
D. = T

l C

latch synchronization = max.(ai, Tc - Tp)di
equations

D i = max(Ai, Tc - Tp)

wire synchronization d·l = a·l
equations

D· = A.
l l

Phase Shift Operator

e· - e· if e· > e·E[z1111 1: l' J l
C - (ej - ei), if ej ~ ei

Table 1: Timing Model Summary

o ~ is the Kronecker delta function which is equal to I whenever w. = 0 and zero otherwise.
Combini~'g these with the combinational propagation equations gives '

a· = min._ 1 n(O Oa . +0.+ 0..)
l J -, Wj J J Jl

A. = max.. 1 (0 _A .+d.+d ..)
l J = ,n wp··J J Jl

To ensure correct circuit operation, we must have

Ai~Tc-Si

ai~Hi

whenever w., > O. In Leiserson's model, the hold time constraints were neglected and syn
chronizer delays and setup times were assumed zero, leaving the following set ofconstraints to be
satisfied:

'Vi, Ai = max j =1, n(Ow pAj +d ji)

'Vi, A i (1 - Ow .0) ~ T c,

3

To determine whether a retimed circuit can be run at a specified cycle time T , it is necesc
sary only to compute the values ofA.using the fll'St constraint above and then verify that the second ,
constraint is satisfied. If the solution fails to satisfy the second set of constraints, then the critical
paths that caused the setup violation can be shortened by retiming the last node in each path by +l.
More aggressively, we can retime each node in the circuit for which Ai > Te' This is equivalent to
one pass through Algorithm FEAS as described in [1]. The A.,variables correspond to the values
~(l) computed by Leiserson's Algorithm CP. Ifafter iterating this procedure IV!- 1 times (IV! is the
number of combinational nodes in the circuit), no feasible solution can be found, then no retiming
exists and the FEAS algorithm terminates. Otherwise, the feasible retiming will be found.

3 Multiphase Retiming Issues
It is important to show that any timing optimization procedure does not alter the behavior

of the circuit being optimized. To guarantee that a retiming would not change the function of a cir
cuit, Leiserson defined the retiming variables with the following set of equations:

w,(i,)) = wi(i,j) + r{J) - r{J)

where w(iJ) is the initial number of storage elements between nodes i andj and w (iJ) is
the number of storage elements between them in the retimed circuit. Leiserson showed that ~s long
asw/i,)) ~ 0, changes to the r variables would not affect a circuit's operation. The essence of the
argument was that the total number ofregisters around every loop in a circuit must remain constant.
With the addition of an extra vertex to represent the environment, enfon::ement of this condition
guarantees equivalent circuit function.

For multiphase retiming, we have a slightly more difficult problem. Instead of simply re
quiring the number of storage elements around a loop to be constant, we need to require that the
latency around loops be constant, where we define latency as the number of clock cycles by which
signals moving around the loops are delayed. Although the latency could be preserved under many
less-restrictive constraints, for now we preserve it by requiring that the number of latches around
each loop be kept constant and that the ordering of phase assignments around each loop is also pre
served. Note that this is subject to the assumptions about latch operation embodied in Table 1.

Figure 2 illustrates a possible latency-related problem in multiphase retiming. When the
node shown is retimed, there is no way to assign a phase to the new synchronizer without changing
the latency through at least one of the branches going into the node. To retime this node, we must
determine the appropriate clock phase to control the new synchronizer. Fortunately. for a signifi
cant class of retiming applications. it can be shown that this problem will not arise. A potentially
powerful application of our multiphase retiming procedure is the conversion ofsingle-phase edge
triggered circuit design into implementations clocked with two-phase level-sensitive latches. Due
to their simplicity, single-phase edge-triggered circuits are much easier to design and be under
stood by human designers. However, level-sensitive latches require significantly less area when
implemented. and in fact, edge-triggered synchronizers are often implemented with a pairoflevel
sensitive latches connected in a master-slave configuration. Also, when level-sensitive latches are

Figure 2 Phase Assignment Conflict in Multiphase Retiming

4

VO ~ VI fbI ~ V2 V3 V4

Figure 3 Replacing IMPhase Flip-Flops with 2MPhase Latch Pairs

used, time can be shared using the flow-through properties of a latch to average delays and reduce
the cycle time. For these reasons, most VLSI circuits are implemented with level-sensitive latches
as storage elements. These observations suggest a design procedure which begins with a single
phase edge-triggered circuit, replaces all of the edge-triggered devices with pairs of level-sensitive
latches (compare Figure 1 and Figure 3), and then retimes these latches to reduce the cycle time
below the optimum achievable with edge-triggered devices. An example of such a retiming is pre
sented in Section 6.

Two-phase circuits created in this way are initially free of phase assignment conflicts; and
since each retiming step must pull the same number ofsynchronizers through each input (or output)
of the retimed nodes, no phase assignment conflicts can ever be introduced.

4 A Procedure for Multiphase Retiming
We are currently developing a new bottom-up heuristic retiming approach, and can now

suggest a method for the retiming of multiphase circuits clocked by either edge-triggered or level
sensitive devices. Any retiming algorithm for timing optimization must have at least two parts:

1.A means for determining the critical circuit delays.
2.A method for modifying these delays by redistributing them throughout the circuiL
For example, in the second of Leiserson's retiming algorithms (algorithm FEAS)[l], the

CP algorithm is used to determine the minimum cycle time and identify critical paths in the circuiL
To reduce these critical delays, Leiserson retimes nodes at the end of each critical path by +1, ef
fectively pulling a register from the end of the path forward, breaking the long path. In this section,
we discuss the approach we take to each part of the retiming problem and in the following sections,
present results obtained by applying our methods to two specific examples.

4.1 Identifying Critical Delays
We currently have two methods for determining the critical paths in a circuit. The dual so

lution of a linear program provides the sensitivity of the objective function (l') with respect to each
constraint [8]. For those constraints which correspond to combinational propagation delays, these
sensitivities are the local partial derivatives of the objective function with respect to the corre
sponding propagation delays. From this we observe that the constraints having nonzero dual values
identify critical paths in a circuiL

The non-zero dual variables identify a single set of constraints that is sufficient to bound
the cycle time; however, they will not be able to detect the presence of parallel critical paths, each
of which is sufficiently long to hold the cycle time to its current minimum. When such parallel crit
ical paths exist, shortening the one identified by the dual variables is not sufficient to reduce cycle
time. Shortening this path will only cause another of these co-critical paths to hold the cycle time
at its existing optimum. This path, however, can be identified by the new set of dual variables. This

5

suggests that we can overeome the problem ofmultiple parallel critical paths by simply shortening
each path as it is identified until there are no more paths of that length and the cycle time is reduced.

However, the slack variables produced in the LP solution also contain critical path infor
mation. We can identify critical paths by scanning the list of slack variables and marking as critical
any path having zero slack. Also, if we do not use linear programming to fmd the optimum cycle
time, we can still look at the slack variables generated by a timing verification procedure such as
checkTc [7].

4.2 Redistributing Critical Delays
Once we have identified which paths are critical, we need some procedure for modifying

them to make them less critical. Delays should be retimed out of critical long paths to more easily
allow setup constraints to be satisfied. Critical short paths can be lengthened to reduce the effect
of hold constraints. If level-sensitive latches are used, a third type of critical path can exist which
cannot be removed by retiming. These cririca/loops are cycles in the cireuit structure in which the
late-arriving signal flows through every latch in the path. The only way to shorten such a loop is
to actually remove logic from the loop (which retiming cannot do) or change the delay of gates in
the loop. In our current work, we have focused only on shortening critical long paths. Two simple
methods are available for doing so: to pull a storage element forward from the end of the path (re
time the last node in the path by +1), or push a storage element backward from the beginning of
the path (retime the first node in the path by -1). Both operations act to shorten the critical path and
can be seen as inverses of one another.

Depending on the nature of the seareh space, it may be necessary to use both methods to
find the truly optimal retimings; but unfortunately, they can also lead to back-and-forth oscillations
when used together. It is much simpler to do as Leiserson did in the FEAS algorithm and consis
tently move latches in the same direction; while this does not eliminate the possibility ofoscilla
tions, it does focus the search and allow the algorithm to run in polynomial time. For general cir
cuits, however, it is an open question whether this method will produce polynomial-time solutions.

5 Single-Phase Retiming
To see an example ofour retiming techniques applied to level-sensitive latches, we applied

them to Leiserson's correlator circuit (Figure 1) with all edge-triggered devices replaced by latch
es. For this example, we assumed that the minimum delays through each block were equal to the
maximum delays, and that the setup and hold times for all latches were zero. We used the dual and
slack variables to find critical delay paths and the delay modification heuristic we used was to re
time the beginning of each critical path by -1. For the initial cireuit, minTc obtained a minimum
cycle time of 21, and the dual solution identified the path from latch 4 to latch 1 as critical. Exam
ining the slack variables showed that the path from latch 3 to latch 1 was also critical. As a result,
vertices v3 and v4 were retimed to produce the next cireuit shown in Figure 4 The remaining steps
in the retiming process are also shown in the figure, including the final retimed cireuit, which con
tains four latches and has a cycle time of 10. Note that this is the minimum cycle time obtainable
for this cireuit by any method that does not modify the delays in the logic blocks or change cireuit
latency: this minimum time can be attributed to any of the three critical loops in the circuit: V I-V,
Vo. V1-V2-V6-V7-VO, and Vl-V2-V3-VS-V6-V7-VO'

Note that at step 4 in the optimization process we saw a temporary increase in the cycle
time. As a result, we cannot rely on simple observations of the cycle time to know when to stop
retiming. In [1], Leiserson showed that a similar procedure to this would always fmd a feasible
retiming within a well-defined number of steps, if one existed. However, this proof was for an al
gorithm for finding a retiming for a predetermined cycle time. Since we do not specify the cycle

6

V7 Tc= 18Tc= 21

~

YO VI V2 V3 V4 vo VI «1», V2 V3 V4 ~ ~ ~ ~ ~

TC= 14 va Tc= 11

~

YO ~ VI ~ V2 V3 ~ V4 YO ~ VI V2 V3 V4

Tc= 14 V6 V5 TC= 11

~
YO «1», VI V2 ~ V3 ~ V4 YO ~ V1 V2 V3 ~ V4

~
TC= 10 V7

YO ~ VI V2 V3 ~ V4

Figure 4 Single-Phase Latch Retiming: Optimization Steps

time for our retimings. we cannot directly use his result. Instead. we conjecture that a similar state
ment may be provable for our retimings: that the optimal retiming can be achieved after a bounded
number of steps. For the current retiming algorithm. we have three possible stopping schemes: to
stop retiming when (1) the minimum achievable cycle time (due to a critical loop) has been
achieved, (2) the retiming has led to a previously-examined circuit (and further iterations will sim
ply continue in cycles). or (3) the retiming has proceeded for a significant number of iterations
without improvement.

6 Two-Phase Retiming
In the previous example. we assumed that the minimum and maximum delays between

latches were equal. For level-sensitive latches, this is the most optimistic assumption possible, as
it provides the most insulation against hold violations and double clocking. On the other hand, the
most conservative assumption would be to assume that the minimum delays between latches were
zero.

There are a number ofways to clock circuits with zero (or unpredictable) minimum delays.
One simple solution is to use edge-triggered devices controlled by a single clock. Another solution

7

is to use single-phase level-sensitive latches and attempt to pad all of the minimum delays suffi
ciently to ensure that no signal can race through and cause hold violations. Yet another approach
is to replace the edge-triggered synchronizers with pairs of level-sensitive latches controlled by
two different clock phases, as described in Section 3. Ifwe do this, then it should be possible to
retime logic into the space between latch pairs and reduce the cycle time below what is achievable
using edge-triggered synchronizers. To demonstrate this, we chose to again look at Leiserson's
correlator circuit, only this time assuming that the minimum delay between latches is zero. The
steps in the retiming are shown in Figure 5. To see an example of a more sophisticated critical path
than those which occurred in the one-phase solution, consider the state of the circuit at the next-to
last step in the retiming process. minTc finds the cycle time of this circuit to be 13.5 and the critical
path extends from latch 3 to latch 8 along the path through latches 6 and 7. The critical path extends
through latches 6 and 7 because the critical late signal passes directly through both latches without
being held up. This path can be shottened by retiming venex v2 to produce the final retimed circuit.
This circuit has a cycle time of 10, and since we know that this is the minimum cycle time achiev
able for this circuit, we stop.

7 A Bounded Retiming Algorithm
We are currently working to develop retiming algorithms that have well-established stop

ping criteria. Leiserson demonstrated that his FEAS algorithm would stop after a f'Inite number of
steps (IVI- 1), by showing that each iteration of the algorithm was equivalent to a pass of the Bell
man-Ford algorithm for constraint satisfaction, which was itself guaranteed to find a solution (if
one existed) after at most (lVI-I) iterations. Leiserson's optimization procedures worked by first
calculating a list of all possible minimum cycle times for a circuit and then performing a binary
search through the list in which he tested at each step whether a retiming existed to allow the circuit
to run at the specified cycle time. The FEAS algorithm was one such algorithm for determining
whether or not such a retiming existed. .

For circuits clocked with level-sensitive latches, it is not so straightforward a matter to
make an exhaustive list of the possible minimum cycle times of a circuit. Instead, we take an iter
ative approach that can be converges to the exact solution.

The retiming algorithm which was demonstrated in the previous sections was an iterative
one: it: repeatedly retimed critical long paths in a circuit in an attempt to reduce the circuit cycle
time. The algorithm as demonstrated retimed only the last node in each critical path during each of
its iterations. Ignoring the presence ofzero-delay nodes and applied to edge-triggered circuits, each
such iteration is ~¢valent to one pass ofLeiserson's FEAS algorithm where the target cycle time
is just less than T 1) , the minimum cycle time of the retimed circuit in the i-th iteration.

Ifwe mak~ a small modification to the demonstrated procedure, we can guarantee that our
new algorithm can be stopped IVI - I iterations after the optimum retiming has been found, where
IVI is the number ofcombinational nodes in the retiming graph. The proposed algorithm is listed in
Figure 6. Each iteration of the algorithm is a equivalent to a pass of the FEAS algorithm with a
target cycle time just below the best cycle time found thus far. Ifno reduction in cycle time is seen
after IVI - 1 iterations, then we know that we can stop, because we have just completed IVI - 1 iter
ations of the FEAS algorithm at the current target cycle time. We know that this algorithm will
eventually f'md an optimal retiming because as soon as a feasible retiming is found for the current
target cycle time, it stans again with a new (lower) target time. There are two differences between
this algorithm and the one used in the previous two sections. The first is that it is continually trying
to retime the current circuit to go faster than the best cycle time seen thus far, whereas the original
algorithm only tried to beat the cycle time of the circuit in its current state. The second difference
is that the previously demonstrated procedure only retimed nodes at the ends of critical paths; the

8

Tc=24 Vi Vi VII V5 Tc ",,21

~
3

VO cl\41Vlcl\ w 4\ VI ~ cI\ V4

."
TC=17 Vi V5 Tc "" 14

V4

Tc ... 17 va V5 Tc=14

w

Tc=12 Vi Tc= 10.5

YO

Vi V1

)o--liiI-M 3 J-M-fi-t(

4\ <\ V1 4\ VI va ~ I'l\ V4 VO VI I'l\ va <\ 4\vo V4

Figure 5 Two-Phase Latch Retiming: Optimization Steps
proposed algorithm retimes all nodes whose outputs would cause a setup violation at the input of
a subsequent storage element. The above-derived bound has currently only been proven for circuits
clocked with edge-triggered flip-flops; however, we are currently working to prove that it also ap
plies for level-sensitive latches.

8 Conclusions
This paper has presented a general framework for the retiming of sequential circuits con

trolled by both edge-triggered and level- sensitive devices under complex clocking schemes. We
have discussed and demonstrated a method for retiming that is successful for both single- and two
phase circuits with level-sensitive latches. We have also proposed a method with a well-defined

9

bestTc =minTc (cmrent..circuit)

best-cilcuit = cmrent-cilcuit

countdown =IVI - 1

while (countdown C!: 0) do

for all nodes with arrival times C!: bestTc - setuptime
mark node to be retimed

end for

move latches forward past all marked nodes (retime the cmrent-circuit)

ifminTc (cmrent-cilcuit) < bestTc

bestTc =minTc (cmrent-cil'cmt)

best-cilcuit = cmrent-cilcuit

countdown =IVI - 1

else
countdown =countdown - 1

end if
end while

Figure 6 Proposed Retiming Algorithm

stopping criterion. We are currently working to fully automate these methods within the minTc
software framework.

References
[1] 	 C. E. Leiserson and J. B. Saxe, "Retiming synchronous circuitry," Algorithmica, vol. 6, pp.

5-35,1991.

[2] 	 O. De Micheli, "Synchronous logic synthesis: Algorithms for cycle time minimization,"
IEEE Transactions on Computer-Aided Design, vol. 10, no. I, pp. 63-73, January 1991.

[3] 	 S. Malik, E. Sentovich, and R. Brayton, "Retiming and resynthesis: Optimizing sequential
networks with combinational techniques," IEEE Transactions on Computer-AidedDesign,
vol. 10, no. 1, pp. 74-84, January 1991.

[4] 	 K. Bartlett, G. Borriello, and S. Raju, ''Timing optimization of multi phase sequential log
ic," IEEE Transactions on Computer-Aided Design, vol. 10, no. 1, pp. 51-62, January
1991.

[5] 	 N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli, "Retiming ofcircuits with sin
gle phase transparent latches," in Proceedings ofthe International Worlcslwp on Logic Syn
thesis, Research Triangle Park, NC, May 1991.

[6] 	 K. A. Sakallah, T. N. Mudge, and O. A. Olukotun. "Analysis and design of latch-controlled
synchronous digital circuits", in Proceedings of the 27hDesign Automation Conference,
1990.

[7] 	 K. A Sakallah, T. N. Mudge, andO. A. Olukotun, "checkTcandminTc: Timing verification
and optimal clocking of synchronous digital circuits", in ICCAD-90 Digest of Technical
Papers, November 1990.

[8] 	 M. J. Best and K. Ritter, Linear Programming: Active Set Analysis and Computer Pro
grams, Prentice-Hall, 1985.

10

