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Abstract

The widespread use of paralle] machines, and hypercubes in
particular, is being held back by the lack of high-order parallel
programming languages. In this paper we discuss the issues
involved in establishing an existing language that supports par-
allel processing, Ada, on a hypercube multiprocessor. The ma-
jority of the paper addresses the requirements and implementa-
tion of the run-time system, which is the key to establishing any
parallel language. First, the requirements of the run-time sys-
tem for Ada are described from a machine-independent point of
view. Next, the approach taken toward implementing this sys-
tem on a hypercube is discussed, with considerations given for
language-level program partitioning and interprocessor commu-
nication performance. Finally, the status of our current imple-
mentation is discussed and some concluding remarks are made
about patallel languages in general, based on our experiences,

1 Introduction and Motivation

The widespread use of parallel machines is being held
back by the slow rate at which high-order parallel pro-
gramming languages and appropriate software develop-
ment environments are being established for parallel ma-
chines. The availability of such languages will allow
users of parallel systems to develop machine-independent
concurtent software. This step to machine independence
is critical if wasteful duplication of effort is to be avoided
whenever application software is ported to a new parallel
machine. Machine independent software will hasten the
day when reusable software becomes a reality for parallel

"This work was supported in part by Department of Defense grant
number DOD-MDAS04-87-C-4136

Ada Letters, March/April 1989

Page 118

machines, as it presently is for conventional uniproces-
sors. It will also facilitate the development of truly paral-
lel algorithms that can unlock the performance potential
of parallel machines. This paper examines the problem of
supporting an existing parallel language, Ada, on a large-
scale distributed-memory parallel computer, specifically
a hypercube multiprocessor.

The programming of distributed-memory parallel ma-
chines is normally done by writing a separate program
to run on each processor. These programs communicate
using low-level message passing operations provided by
the operating system and made available to the program-
mer through extensions to a sequential language (usually
C or FORTRAN). Typically, these separate programs are
copies of a single program that is written to allow dif-
ferent execution paths based on the program’s location
in the hypercube array of processors and on the data the
program receives during its execution. This form of pro-
gramming is referred to as the Single Code Multiple
Data (SCMD) style [Buz88]. In the case where differ-
ent programs are written for each processor, the program-
ming style is referred to as Multiple Code Multiple Data
(MCMD). Even in the MCMD case, though, the number
of ditferent programs written for a large-scale multipro-
cessor is relatively small, since few applications require
a large number of different interacting programs.

There are several problems with the above style of pro-
gramming, and they are related to the separate program
concept. Two of these problems that are of particular
concem are the lack of type checking in communica-
tions between processors, and the machine dependence
of the code. These problems are can be solved by us-
ing a suitable parallel language. By parallel language
we mean a programming language with units of con-
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currency that may be distributed across the processors
of a multiprocessor and executed simultaneously. Such
a language should provide strong type checking across
processor boundaries, abstract interprocessor communi-
cations as interprocess communications, allow data shar-
ing between processes to be specified at the language
level, and provide for synchronous creation and termi-
nation of processes within a program. These features
should all be implemented while still supporting SCMD
style algorithms by providing a mechanism for processes
to be replicated a large number of times. This support
would allow a large class of algorithms to benefit from
the other features mentioned carlier, and would provide a
machine-independent language for programming parallel
processors with single, coherent programs,

There are a number of languages that are being devel-
oped for parallel programming on large-scale multipro-
cessors [Dal88,FMO88,Ree88]. There are also several
efforts to implement Ada on distributed systems, most
notably [Bes88,Bam88,VKT87]. While this work is rel-
evant, our approach is focussed on implementing Ada
as a parallel language for multiprocessors. Ada is a
language that supports parallelism and fits the require-
ments stated above. In the following discussion, it is
assumed that the reader is familiar with Ada, For a brief
overview of the language, see the original version of this
paper [CIM88b]. More detailed references include text-
books (e.g. [Bar84]) and the Language Retference Man-
ual [LRMS83]. An example of an algorithm suitable for
running on a hypercube and coded in Ada can be found
in [CMV86]. This program finds all solutions to the n
Queens problem concurrently.

The key to establishing a parallel language on a multi-
processor is the run-time system. Before discussing this,
brief introductions to the hypercube architecture and the
Ada language are given. Then, the run-time system com-
ponents necessary to support an implementation are dis-
cussed. Following that, the approach taken to distributing
these components across the processors of a hypercube
is described. The status of our current implementation
on an NCUBE/ten, a commercial hypercube, is then pre-
sented as well as some concluding remarks regarding
parallel languages and Ada in particular.

2 The Hypercube Architecture

A hypercube computer consists of several microproces-
sors interconnected by communication links. A hyper-
cube of dimension n i$ a multiprocessor with NV = 2"
processors. Each processor is directly connected via
communication links to » neighbors. An operating sys-
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tem kernel supports store and forwarding of messages
so that processors that are not neighbors can still send
messages to each other through intermediate processors.
The maximum number of distinct communication links
that must be used to transfer a message between any two
processors is n, the dimension of the hypercube. Fig-
ure 1 shows hypercube graphs of dimension zero, one,
two, three, and four. The nodes in the graphs represent
processors and the edges represent communication links.

In the case of the NCUBE machine, each processor has
its own local memory (512 K-bytes) and the hypercube
array is managed by a host computer (an Intel 80286
based system). The configuration used in our work at
The University of Michigan is an NCUBE/ten which is
partially configured with 64 processors but has the capac-
ity to hold 1024 processors. The processors are Vax-like
32-bit microprocessors with IEEE standard P754 floating
point capability. Each processor runs an operating sys-
tem to support communications called Vertex, as noted
above. The host runs a multi-user Unix-like operating
system called Axis. Axis allows the hypercube array
to be partitioned into subcubes that may be allocated to
different users. More details on the NCUBE architec-
ture can be found in [HMS86] and more information on
Vertex can be found in [MBAS86].

As a final point, we note that our run-time system for a
hypercube multiprocessor is suitable for any distributed-
memory multiprocessor provided minimal support for in-
ternode message passing (comparable to Vertex) is pro-
vided. In pamicular, the hypercube can be used as a
model for a generic system of loosely coupled homoge-
neous processors. The number of processors used in the
hypercube can be varied, and the kernel operating system
shields the run-time system from details of the processor
interconnect scheme. For this reason, we chose the hy-
percube computer as our iestbed for the development of
a distributed run-time system for Ada.

3 Run-Time System Requirements

Because of the large number of features available in the
Ada language, there are many operations which must be
included in the run-time system. These run-time system
requirements can be specified independently of the target
architecture. They are summarized in the points below.

Memory Management In addition to supporting the
normal allocation and deallocation of dynamic storage,
a mechanism must be established to support the shared-
memory model of Ada, This is necessary for the case
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Figure 1: Hypercubes of dimension 0, 1, 2, 3, 4

where tasks are nested and may reference variables in
an enclosing task. This requirement is more complicated
than the case of nested blocks, because each task also
needs its own independent stack space. The approach
taken is to allocate a fixed amount of stack space for
each stack and interconnect them in a cactus stack. In
this data structure, a task’s local stack space points back
into the stack of its parent where visible variables, sub-
programs, and/or tasks may be located. This structure
allows several tasks to share the trunk of the cactus stack
while still maintaining their own individual stacks.

Clearly, it is possible for several tasks to access a
shared variable. It is the responsibility of the program-
mer to ensure mutual exclusion of these accesses if it
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is necessary. A mechanism to protect shared data that
closely resembles monitors can be easily implemented at
the language level using tasks.

The run-time system must also support the dynamic
altocation of memory objects of all types including tasks.
Dynamically created tasks must also have their stacks
linked into the cactus stack.

Task Activation and Termination The language rules
for Ada specify that activation and termination of tasks
be synchronized. A task may not activate until all of
its children have been activated. Conversely, a task may
not terminate until all of its children are terminated. In
the case where a task depends directly on a block or
subprogram, the execution of the parent code may not
pass an end or return statement until the child task is
terminated. Tasks may also be abnormally terminated by
an abort statement, with the abnormal termination being
propagated to all dependent tasks.

These rules provide for orderly management of the
cactus stack, but require additional work by the run-time
system. Several different task states are necessary so
that the run-time system can coordinate the activation
and termination. Tasks must be aware of their depen-
dents and a mechanism for communicating state changes
among these tasks is needed. Support is also needed for
processing abort statements and the terminate altemative
of the select statement.

Timing Support The notion of time is provided by Ada
and is available for use in the form of a time-of-day clock,
task delays, and time limits on task communication. Al-
though not required by the language, the run-time system
may also support the time-slicing of multiple tasks on a
single processor. Since this is usually desirable, a single
interrupting count-down timer (interval timer), normally
available, should be dedicated to this purpose.

The strategy for managing several time delays and lim-
its is based on the time-of-day. The run-time system
manages a queue of events, a timed events gueue, that
is ordered in increasing time-of-day values. Whenever
a time-slice interrupt or system call is made, a check is
performed to see if the current time-of-day implies that
any delays or limits have expired. If so, the associated
events are processed and removed from the queue. Obvi-
ously, with this scheme it is possible for a delay or ime
limit to last longer than specified. However, the length
of the delay or time limit can be bounded by roughly the
delay value plus the time-slice value,

This scheme may also be used in conjunction with an
additional interval timer that is not used for time-slicing.
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At each interrupt, the next delay interval in the list is
loaded into this timer. In the case where a second timer
is not available, a time-of-day clock is relied upon. If
such a clock is not available in hardware, careful use
of the time-slicing interval timer is required. A scheme
for using a single timer to implement all timing support
(i.e. time-slicing, time-ot-day, and delays) is described in
{CMV87]. This scheme has yet to be extended to cover
the multiple processor case, however. This problem is
discussed in Sec. 4.2 below.

Task Communication A major requirement of the run-
time system is support for the rendezvous mechanism.
This must cover the simple, conditional, and timed en-
try calls as well as the various alternatives of the select
statement for accepting entry calls. Entry queues must be
provided tor each entry to store pending calls that cannot
be immediately accepted. Wotkspace for rendezvous pa-
rameters must also be provided. Figure 2 shows a typical
entry queue data structure and the associated task control
block (task control blocks are described below),

Task Control Block Entry Queue
Proccess Gali Info
Info
Next Ptra
State
Parameter
s Spaco
-]
L]
Head Ptr e— Call Info |
Tail Ptr a— Nost PUr
Guard Value ]
- Parameter
Other Info s
o
v Call info
Next Ptr &-
Parameter
Space

Figure 2: Task control block and entry queue.

The run-time system implements the necessary syn-
chronization through the use of several additional task
states. Calls that cannot be immediately accepted are
placed in entry queues, and also added to the timed events
queue in the case of a timed entry call. In case of a call
time-out, the entry call is removed from the enfry queue.
Tasks accepting entry calls take them from the appro-
priate queues, or wait for one to arrive depending on

Ada Letters, March/April 1989

Page 121

the accepting code used. If a time bound is placed in
a select statement, an entry is made to the timed cvents
queue. When the delay expires, the task moves on to the
next statement beyond the select if no call was accepted.
Guards for accept statements are evaluated by code gen-
crated by the compiler and their values are passed to the
run-time system.

Run-time system calls are made by tasks attempting to
call or accept an entry. The run-time systemi must pro-
vide mechanisms for exchanging state information and
rendezvous parameters between tasks in addition to the
requirements stated above.

Exception Handling and Propagation Exception han-
dling is provided in Ada as a means for recovering from
error conditions. When an exception occurs, two cases
must be considered: 1) the exception is trapped by either
the operating or run-time system, e.g., in the case of di-
vision by zero; or 2) the exception is detected by either
the run-time system or generated code, e.g., in the case
of a tasking error or an array bounds violation. When an
exception occurs, a branch to the handler for that excep-
tion occurs. This address is contained in the current call
frame. If no handler exists at this level, the exception
is propagated up the dynamic calling chain until either
a handler is found or the program is aborted (except in
some cases as noted below).

It is also possible in some cases to propagate excep-
tons between tasks. When a task is elaborated, if an ex-
ception occurs, it is propagated to its parent task. Also,
an exception may be propagated during a rendezvous if
the called task has no handler or if the calling or called
task is aborted. Other than these situations, exceptions
are not propagated outside of tasks.

The run-time system then, in addition to detecting and
trapping exceptions, must ensure that proper handlers are
tound by propagating exceptions either by rolling back
the call stack or by notifying a task.

Task Scheduling The run-time system must provide a
task scheduler, which may involve time-slicing as dis-
cussed above, The scheduler must switch contexts be-
tween tasks at scheduling points by saving state, selecting
another task to run, and dispatching that task. The state
ot a task is saved by storing the program status word
and program counter and saving all necessary registers
in the task’s local task space. Scheduling points occur
whenever operating system calls, run-time system calls,
or time-slice interrupts are made. Scheduling should be
fair and account for task priorities if they are present.

As an aid to the scheduler and run-time system in

Volume IX, Number 2



general, each task has a data structure referred to as
a task control block (tcb) as shown earlier in Fig, 2.
This structure contains the task identifier, program status
word, program counter, state identifier, local stack space,
pointers to parent’s and dependent’s tcbs, pointers to ren-
dezvous parameter space and entry queues, and possibly
other information. These tcbs may be linked in a circu-
lar list or linked into queues depending on their state. A
ready queue of tcbs is kept in order of priority.

Additional Requirements Other run-time system re-
quirements include support for generic units, com-
piler attributes, I/O, predefined packages, and interrupts.
Generic units are mainly supported by the code genera-
tor, but may require some run-time type checking. Some
compiler attributes are queries to the run-time system re-
questing basic information, e.g., E’COUNT retums the
number of tasks currently waiting on entry E. These are
supported as calls to the run-time system. I/0, predefined
packages, and interrupts are all highly system dependent
but each has a language level specified interface. The
role of the run-time environment in this case is to imple-
ment that interface. Each of the above listed features is
discussed in more detail in [CIMB88a].

4 Distributed Run-Time System

In order to support the distributed execution of a single
Ada program on a hypercube multiprocessor, the run-
time system must be extended to account for multiple
processors that lack a common shared memory. In an
etfort to keep the requirements of the run-time system at
a reasonable level, certain restrictions are placed on the
units of an Ada program that may be distributed across
multiple processors. We examine these restrictions in
the next section, and then present the associated run-time
system requirements in the following section. Consider-
ation is then given to relaxing these restrictions at the
expense of additional run-time system overhead. This
may be desirable in the case of a target machine with
very fast interprocessor communication.

4.1 Language Units of Distribution

The Ada language definition does not specify how a pro-
gram is to be partitioned for execntion on multiple pro-
cessors. This decision is left to the implementor. We
have chosen to restrict the allowable units of distribution
so that a reasonable amount of granularity may be ob-
tained without unnecessarily complicating the run-time
system. This was also one of the goals of the study done
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in [VMB89] and [Mud87], where library packages and li-
brary subprograms were proposed as units of distribution.
They were chosen so as to reduce the number of potential
remote references and to eliminate the need for cross-
processor dynamic scope management. For example, the
above units of distribution ensure that nested blocks and
subprograms cannot be remotely located from their en-
closing scope. However, as discussed in [CIM88a], more
flexibility is desired for distributing Ada programs on a
large-scale distributed-memory multiprocessor such as a
hypercube. To allow for this, we propose the same units
as in [VMB89], but also allow tasks that are declared or
have their types declared in a library package specifica-
tion to be distributed. We also allow these tasks to be dis-
tributed when they are array components. This scheme
allows tasks that are dependents of library packages to
be distributed, but requires that tasks nested within other
tasks reside on the same processor as their parent. This
follows from the fact that nested tasks must be declared
in the parent task’s body, which must be defined in a
package body, and such tasks are not allowed to be dis-
tributed according to the rules given above.

These units of distribution allow a large number of
tasks, possibly identical, to be distributed to separate
processors while still retaining a flexible naming scheme
[CIM88a]. This allows SCMD style algorithms to be eas-
ily supported within the parallel language. Also, these
distributable units save the run-time system some effort,
by not allowing nested tasks to be distributed. This re-
striction simplifies the implementation of task termina-
tion via the terminate alternative of the select statement,
and prevents the need for cactus stack pointers to cross
processor boundaries, thus reducing the number and type
of potential remote references.

In order to further simplify the run-time system, our
inifal approach disallows the dynamic migration of tasks
once they have been assigned a processor. Instead, stat-
ically declared tasks, as well as library packages and
library subprograms are assigned a processor at compile-
time. Dynamically created tasks are loaded onto the pro-
cessor executing the allocating statement and are there-
after prohibited from moving, While this scheme does
not allow for dynamic load balancing of tasks, it does
simplify the run-time system’s job of locating tasks and
does not violate the restrictions stated in the above para-
graph. The prospect of migrating tasks is discussed fur-
ther in Sec. 4.3 below.

4.2 Run-Time System Components

The units of distribution together with the target archi-
tecture dictate the specific requirements of the run-time
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system. A summary of these requirements is outlined
in the subsections below. Additional details regarding
these run-time System components including implemen-
tation strategies can be found in {CIMS88a].

Run-Time System Kernel The first step in implement-
ing the run-time system for a hypercube target is to repli-
cate the task scheduling kernel on each processor. Along
with this, the various data structures associated with a
particular task should be located on the same processor
as that task. These data structures include tcbs, entry
queues, and rendezvous work space.

In order to support language features across processor
boundaries, the run-time system needs an interprocessor
communication facility. In most cases, this is provided
by the operating system. In our implementation on the
NCUBE, we made use of the existing store and forward
communication facility, Vertex. Because of the need for
communication between processors that do not share a
physical memory, a message passing based run-time sys-
tem was designed. This system implements all communi-
cation between tasks in the run-time system as messages.
A queue of pending messages is read and processed at
each scheduling point. The processing of messages re-
sults in changing task states, system queues, or sending
more messages. The inspiration for the message based
approach came from the work described in [Wea84]} and
[FiW86]. An implementation of a partial run-time sys-
tem has been built and is described in {CMV87]. This
implementation provides the basic foundation for build-
ing a complete Ada run-time system.

Memory Management As mentoned in Sec. 4.1
above, the units of distribution and restriction on task
movement eliminates the possibility of cactus stack
pointers crossing processor boundaries. This allows each
processor to manage a cactus stack in the same manner
as the uniprocessor case. All cactus stack addresses are
then local without any need for remote memory refer-
ences involving message passing.

In the case of dynamic non-stack allocation and deallo-
cation of objects, the run-time system manages a heap of
storage and is responsible for error checking on requests
and raising an exception when storage is exhausted. In
most cases, the run-time system allocates blocks of mem-
ory from the operating system, which is the situation with
Vertex. The run-time system, rather than the operating
system, should allocate large blocks to form a heap and
also manage the heap. This reduces the number of calls
to the operating system. An additional benefit of this
scheme is that the run-time system provides an operating
system independent interface for the code generator.
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The class of objects that may be allocated dynamically
includes tasks. In some cases, storage must be allocated
for the code as well as the data structures associated
with the task. The run-time system must also initialize
this storage. For example, if the task being created has
its type defined in the package residing on the proces-
sor executing the allocation, ondy data structures need be
allocated for the task as the code is reentrant and can
be shared. Otherwise, the code must be loaded from a
remote processor, using the message passing primitives
provided.

Task Activation and Termination The synchroniza-
tion of task elaboration, activation, and termination is
easily implemented in the parallel case. This is due to the
language units of distribution and the restriction of task
migration. These rules create a situation where the only
task dependency to cross a processor boundary is that of
a task depending upon a library package. A library pack-
age is not an active body of code, and the language defi-
nition states that the termination of a task that depends on
a library package is not defined [LRMS83]. This gives the
implementor the freedom to let tasks that are dependent
on packages hang indefinitely on a terminate alternative,
but places the burden of detecting program completion
on the programmer, who may terminate tasks explicitly
with the abort statement. It is possible, however, tor the
run-time system to support collective termination ot dis-
tributed tasks. Strategies to implement this support have
been proposed and are discussed in Sec. 4.3 below.

The minimum requirement, then, for support of syn-
chronized activation and termination is the same as in the
uniprocessor case. Since all dependencies are local to a
given processor, task states can be readily examined and
altered by the run-time system kernel. This is also true of
tasks terminating via the terminate alternative of a select
statement. Quiescence of tasks all waiting to terminate
on a single processor can be detected in a straighttorward
manner [BaR83].

Timing Support The approach for implementing basic
timing support is to teplicate the linked list structure of
timed events on each processor. This assumes that each
processor has a mechanism for keeping track of at feast
the relative passage of time. This capability is usually
supplied in the form of an interval timer on each proces-
sor, as is the case with the NCUBE. The linked list on
each processor contains records of delay related events
and rendezvous time-outs for tasks residing on that pro-
Cessor.

As stated in Sec. 3, it is possible to use a single inter-
val timer to manage both task time-slicing and to keep
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track of the relative time since the processor was initial-
ized. What is needed, though, is a common sense of
the time-of-day by all processors to support the CLOCK
function of the CALENDAR package. This function re-
turns the absolute time-of-day when called. In principle,
the CLOCK function may be supported by synchroniz-
ing all interval timers before beginning any program, then
keeping track of time passage as before. However, this
scheme requires a sighificant amount of start up over-
head, and is subject to drift because ticks can be lost
during timer manipulation.

Another possible solution is to implement a centralized
time-of-day server. However, the time delay in access-
ing such a server may be too great to make the returned
value reliable. The value may be adjusted to compen-
sate for this overhead, but the exact amount may be in-
determinable, due to variable delays in message passing
and conflicts arising from multiple simultancous requests.
This approach is discussed further in Sec. 4.3 below.

The best solution to this problem is support in hard-
ware for two {imers per processor: an interval timer and a
time-of-day clock This allows time-slicing and the event
queue to be managed as described above, but the time-of-
day is provided by a separate clock. A similar solution
proposed in [VoM87b] utilizes a time-of-day clock along
with a readable/writable compare register. The compare
register contains an absolute time value that indicates
the next timer interrupt. In the case of either solution,
though, the time-of-day clocks for all processors must
be synchronized. This can be achieved by supplying all
ticks from a central oscillator, as is currently done with
the interval timers on the NCUBE,

Task Communicaigion In common with the support for
other language features across processors, a message
passing scheme is needed to implement the rendezvous
mechanism. These messages must indicate the task state
changes that are needed in executing a rendezvous as well
as transmit parameters. Our approach uses a minimum
number of messages.

The message passing begins with the calling task re-
questing the rendezvous. In the case of the simple call,
the request is sent with parameters and the calling task
waits for a reply with results (Fig. 3). If the call is con-
ditional, a call message with parameters is also sent, but
the run-time system on the ieceiving node sends a neg-
ative reply if the called task can not immediately accept
the rendezvous. If the called task is waiting to accept the
call, a reply message is not sent until the critical section
is executed and results are returned. This is possible be-
cause the calling task is suspended awaiting a reply in
both cases.
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Calling Task Accepting Task
Simple Entry Call Wait for Call
Simple Call Messago
Sl Calh
Suspend Critical Saction

Retum Mossaga

Roesume Exacution Resume Execution

Figure 3: Messages for simple entry call.

The message passing protocol for the timed entry call
is more complex. A total of four messages are required
to execute the rendezvous. As before, a call message is
sent inifially, but an entry to the timed events queue is
also made. This entry in the timer queue is based on the
time-out interval supplied in the call. When the accept-
ing task is ready to execute the critical section, a reply
message is sent indicating this fact. If the time-out has
yet to occur on the calling node, a “go ahead” message
is sent, and the rendezvous is executed. Upon comple-
tion, a reply message is sent with results. If the time-out
does occur before the go-ahead is sent, an abort message
is sent to cancel the request. This message identifies
the specific call to be canceled, and allows the called
task to recover whether or not it had sent a ready mes-
sage. The protocol described here for the timed entry
call was modeled after that in [Wea84]. It is also simi-
lar to the one recommended in [VoM87a], but the timing
in that scheme is pertormed on the called processor in-
stead of the calling processor. Figures 4 and 5 show the
message protocols for successful and unsuccessful timed
entry calls respectively.

As for the accepting task, message replies and state
changes are processed according to the type of accept.
In the simple case, the incoming request is placed in
the appropriate entry queue unless it can be immediately
serviced. When it can be serviced, the first message in the
queue is removed, and the reply is sent after execution of
the critical section. If the task attempts a simple accept
when no calls are pending, it waits indefinitely until one
arrives.

In the case of a select statement surrounding several
accepts, the task executes any one of the entries with a
true guard from those that are queued. If no such calls
are pending, the task waits for a call to arrive. If a delay
alternative with a true guard is present, an entry to the
timed events queue is made to bound the amount of time
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Calling Task Accapting Task
Timed Entry Cali i
Timed Call Messago Wait for Call
Delay Accopt Mossage Accept
[
Cenfirm Message
————
——e e &
Suspand Roturn Massago Critical Saction
S
G T
Resume Exscution Resume Exscution

Figure 4: Messages for successful timed entry call.

Calling Task Accapting Task
Timed Entry Call f
Timed Call Message Wait for Gall
DR
Time Cut Accept Mossago Accopt

W‘-—'ﬂ

——— Abort Messago
—

Resume Execution Resumea Exacution

Figure 5: Messages for unsuccessful timed entry cail.

that the task will wait for a call. In the case of an else
alternative, the code following the clse is executed it no
calls are pending on the selected entries with true guards.
If a terminate altemative is present instead of a delay or
else alternative, the task will wait on the selected entrics
if none are pending until a call arrives or the task is
terminated by the run-time system.

Further details of this implementation can be found in
[CIM88a] and [CMVBT].

Remote Subprogram Call and Obhject Reference
Support for remote subprogram calls and remote object
references must be included in the run-time system since
these entities are bound to processors according to the
package they reside in, and packages may export inter-
taces via specifications to code units on other processors.
It is also possible in some cases for objects that are de-
clared in a package body to be visible to tasks taken from
the same package but distributed to a remote processor.
References to these objects and subprograms must be
implemented via a run-time system call. Among the pa-
rameters to such a call is the identifier of the processor
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holding the object. This is known to the caller as long
as the binding specification is made when the package
containing the object is compiled.

Remote references can also occur through the use of
access variables. To address this problem, access val-
ues are implemented as processor—address pairs. Each
pointer reference then results in a check of the proces-
sor part to see it the reference is remote. If it is, a call
to the run-time system is made. An alternative solution
would be to disallow the passing of pointer values across
processors, but this would violate the Ianguage definition,

In all cases of remote reference, the referencing task is
blocked while the run-time system makes the request by
sending a message to the kermnel on the processor holding
the object or subprogram. Because the remote processor
may be more than one hop away on the hypercube and
the run-time kernel at the remote site must process the
request before responding, the requesting processor per-
forms a context switch to allow another task to run while
awaiting a reply. The reply message may contain an ac-
knowledgement of a write to an object, the value of an
object being read, a function return value, or parame-
ters returned from a procedure. The value returned is
passed back to the requesting task. In the case of a re-
mote subprogram call, the call parameters are placed in
the message and the run-time system at the receiving end
places these values on the stack space of a server task;
this task is scheduled like any other. This approach is
similar to the scheme described in [BiN84], except there
is no need to bind the caller and callee dynamically, be-
cause the location of the subprogram is known when it
is compiled.

Exception Handling and Propagation The additional
support tor exceptions needed in the multiprocessor case
involves the propagation of exceptions across processors.
This can occur when exceptions are raised in remote sub-
programs where there is no handler or in the case of an
exception in a rendezvous between tasks on different pro-
cessors. In these situations, the return messages normally
sent must include an indication of the exceptional con-
dition that is being propagated. In the case of a calling
task in a rendezvous being aborted, a message must be
sent to cancel the rendezvous if it has not already started.
1t it has begun, the called task executes the rendezvous
as it normally would and no exception occurs.

4.3 Extensions for Fast Communication

In the presence of very fast internode communication
time, it may be desirable to remove some of the restric-
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tions on program distribution and change the implemen-
tation of the run-time system. Possible changes would
affect task migration, task distribution, a network sense
of time, and remote object access. The possibilities are
discussed in the paragraphs below.

Migration of Distributable Tasks One approach in al-
lowing the migration of tasks is to allow only tasks that
are currently distributable to be migrated. This may in-
volve the implicit migration of nested tasks, in order to
preserve the guarantee that nested tasks all reside on the
same processor as their parent. In all cases of task move-
ment, all data structures associated with the tasks as well
as all code must be moved via internode communication.
In the case where a large amount of memory is available
on each processor, it may be possible for each node to
retain a copy of all migratable code so that code move-
ment is not necessary. The advantage of this approach
to migration is that it does not violate the assumptions
that simplify the cactus stack implementation and syn-
chronized task termination.

Distribution and Migration of all Tasks This unre-
stricted migration is implemented as in the case above,
but the run-time system must also support cactus stack
pointers across processors and the synchronized activa-
tion and termination of tasks across processors includ-
ing the termination of tasks via the terminate alternative
of the select statement. Cactus stack relative references
would have to be modified to incorporate the use of point-
ers that indicate processor as well as address. Synchro-
nized activation and termination can be implemented in
a straightforward manner using message passing when
states need to be altered. A solution for the simple case
appears in [Wea84], and a solution for the case of the ter-
minate altemative of the select statement can be obtained
by adding messages to the solution given in [FSS87],
However, unrestricted migration of tasks also causes a
problem when a task needs to be located. A possible
approach to solving this problem is to adopt the method
presented in [Ros87].

Time-of-Day Server In the case where only a single
interval timer is available on each processor, a central-
ized time-of-day server is a possible approach to solving
the common system wide sense of time problem. The
usefulness of such a timer is dependent on the its access
time with respect to its resolution. In addition to the time
needed to read the timer, the access time is made up of
the communication delay and the time to resolve access
conflicts if more than one processor requests the time-of-
day simultaneously. If this access time can be limited to
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a small value in comparison with its resolution, then a
centralized time server can be used to support a common
sense of the time-of-day throughout the system.

In the case of the hypercube, the time server can be
implemented by a host processor or a dedicated node
processor. The communication delay in accessing the
timer is then bounded by the maximum number of hops
between the caller and the time server. In the case of a
dedicated node processor as the server, this number of
hops is the dimension of the hypercube.

Remote Object Reference In the presence of fast com-
munication times, it may be desirable to implement a
remote object reference as a processor synchronous
operation, as suggested in [LeB82]. In this approach,
the referencing processor remains idle while it awaits
a response from the called processor’s run-time system.
This approach is preferred if the remote reference can be
performed in an amount of time less than it takes to per-
form a context switch to another task. In the case of the
hypercube, it may be necessary to employ this strategy
in only some of the remote references. The decision of
whether or not to schedule another task is based on the
number of hops away the referenced variable is, since
this determines the lower bound on communication time.

5 Status and Conclusions

The current implementation of the Ada run-time system
on the NCUBE/ten contains support for task scheduling,
rendezvous, delays, and synchronized activation and ter-
mination. Initially, a general approach was taken and
the message passing schemes discussed above were used
in support of features executed within one processor as
well as across processor boundaries. This approach will
simplify the transition to incorporate the capabilities de-
scribed in Sec. 4.3 above, but may cause unnecessary
overhead given the current restrictions. In some cases,
the run-time system code is being modified to take advan-
tage of these restrictions. The two approaches may then
be compared through performance measurement, using
the techniques and algorithms given in [CDV86]. More
details regarding the actual implementation and an ex-
ample of its use may be found in [CMV87].

Several conclusions can be made about parallel lan-
guages on distributed memory multiprocessors. These
range from the programmability of such machines to the
stucture and implementation of the run-time environ-
ment. Based on the above discussion, we can make the
following points:
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e Parallel languages improve the multiprocessor pro-
gramming environment. Such languages allow mui-
tiprocessors to be coded with a single program that
provides abstraction through high level structures.

[Bam88]

Bamberger, J., “Distributed Ada Run-Time
Kemel (DARK),” ACM SIGAda Summer ' 88
Conference and Tutorials, August 1988.

The benefits of this approach include strong type [Bar84] iﬁes “J/GIP szgm";;”"g 119,18 4Ada‘
checking, multitasking, and the opportunity to create son-ivesiey, keading, Mass., ‘
coherent parallel programs, An additional benefit of [Bes88] Beser, E.L., “Distributed Ada - AMSP,”
parallel languages is the reusability of machine in- ACM SIGAda Summer '88 Conference and
dependent concurrent software that is coded in these Tutorials, August 1988,
languages.
[BiN84] Birrell, A.D. and B.J. Nelson, “Implement-
Specification of the allowable program units of dis- ing Remote Procedure Calls,” ACM Trans-
tribution greatly impacts the requirements of the actions on Computer Systems, vol. 2, no. 1,
run-time system. Placing some straighttorward re- pp. 39-59, February 1984,
strictions on the units of distribution can simplify the rrs form:
duties of the run-time system without unreasonably [Buz88] B,"E'ZZ_Md’ G.D. “High Per Orm‘u?ce Commu;
hampering the programmer or violating the language nications on Hypercube Multiprocessors,
definition. Ph.D. Thesis, The University of Michigan,
June 1938.
Even when supporting a large number of language
. . . [CDVE6] Clapp, R.M., L. Duchesneau, R.A. Volz,
features, cfficiency can be achieved if support for o
. : T.N. Mudge and T. Schultze, “Toward Real-
costly operations does not hamper the implemen- . N
. . L ] Time Performance Benchmarks for Ada,
tation of other operations. This is a goal that we .
. L ) Communications of the ACM, vol. 29, no. §,
wanted to achieve, and it influenced the implemen- 760-778. A o 1936
tation and choice of units of distribution. Imple- pp. /OU-178, Augus '
menting intraprocessor task rendezvous through di- [CMV86] Clapp, R.M., T.N. Mudge and R.A. Volz,
rect queue manipulation instead of message passing “Solutions to the n Queens Problem Using
and restricting task migration to allow only local Tasking in Ada,” ACM SIGPLAN Notices,
cactus stack pointers are instances of this approach. vol. 21, no. 12, pp. 99-110, December 1986,
Developing run-time support for Ada on a parallel [CMVE87] Clapp, R.M., T.N. Mudge and R.A. Volz,
target provides valuable experience for the study of “Distributed Run-Time Support for Ada
similar parallel languages on multiprocessors. The on the NCUBE Hypercube Multiprocessor,”
units of the run-time system were coded in a high Technical Report RSD-TR-10-87, Robotics
level language in our implementation and were or- Research Laboratory, The University of
ganized into well defined modules. They can be Michigan, August 1987,
easily modified to provide specific support for other 8 ! M TN, Mudee. “Distributed
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