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Abstract

The widespread use of parallel machines, and hypercubes i n
particular, is being held back by the lack of high-order paralle l
programming languages . In this paper we discuss the issue s
involved in establishing an existing language that supports par-
allel processing, Ada, on a hypercube multiprocessor. The ma-
jority of the paper addresses the requirements and implementa-
tion of the tun-time system, which is the key to establishing any

parallel language . First, the requirements of the tun-time sys-
tem for Ada are described from a machine-independent point o f
view. Next, the approach taken toward implementing this sys-
tem on a hypercube is discussed, with considerations given fo r
language-level program partitioning and intetprocessor commu-
nication performance . Finally, the status of our current imple-
mentation is discussed and some concluding remarks are mad e
about parallel languages in general, based on our experiences .

1 Introduction and Motivatio n

The widespread use of parallel machines is being hel d
back by the slow rate at which high-order parallel pro-
gramming languages and appropriate software develop-
ment environments are being established for parallel ma -

chines . The availability of such languages will allo w
users of parallel systems to develop machine-independen t
concurrent software . This step to machine independence
is critical if wasteful duplication of effort is to be avoide d
whenever application software is ported to a new paralle l
machine . Machine independent software will hasten th e
day when reusable software becomes a reality for paralle l

'This work was supported in part by Department of Defense gran t
number DOD-MDA904-87-C-4136

machines, as it presently is for conventional uniproces-

sots . It will also facilitate the development of truly paral-
lel algorithms that can unlock the performance potentia l
of parallel machines . This paper examines the problem o f
supporting an existing parallel language, Ada, on a large -
scale distributed-memory parallel computer, specificall y
a hypercube multiprocessor.

The programming of distributed-memory parallel ma-
chines is normally done by writing a separate program
to run on each processor . These programs communicat e
using low-level message passing operations provided b y
the operating system and made available to the program-
mer through extensions to a sequential language (usuall y
C or FORTRAN) . Typically, these separate programs are
copies of a single program that is written to allow dif-
ferent execution paths based on the program's location
in the hypercube array of processors and on the data the
program receives during its execution . This form of pro-
gramming is referred to as the Single Code Multiple
Data (SCMD) style [Buz88] . In the case where differ-
ent programs are written for each processor, the program -
ming style is referred to as Multiple Code Multiple Data
(MCIvID) . Even in the MCMD case, though, the numbe r
of different programs written for a large-scale multipro-
cessor is relatively small, since few applications requir e
a large number of different interacting programs .

There are several problems with the above style of pro -
gramming, and they are related to the separate progra m
concept . Two of these problems that are of particula r
concern are the lack of type checking in communica-
tions between processors, and the machine dependenc e
of the code. These problems are can be solved by us-

ing a suitable parallel language . By parallel languag e
we mean a programming language with units of con -
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currency that may be distributed across the processor s
of a multiprocessor and executed simultaneously . Such
a language should provide strong type checking acros s
processor boundaries, abstract interprocessor communi-
cations as interprocess communications, allow data shar-

ing between processes to be specified at the languag e
level, and provide for synchronous creation and termi-
nation of processes within a program . These features
should all be implemented while still supporting SCMD
style algorithms by providing a mechanism for processe s
to be replicated a large number of times . This support
would allow a large class of algorithms to benefit fro m
the other features mentioned earlier, and would provide a
machine-independent language for programming paralle l
processors with single, coherent programs .

There are a number of languages that are being devel-
oped for parallel programming on large-scale multipro-
cessors [Da188,FMO88,Ree88] . There are also several
efforts to implement Ada on distributed systems, mos t
notably [Bes88,Bam88,VKT87] . While this work is rel-
evant, our approach is focussed on implementing Ada
as a parallel language for multiprocessors . Ada is a
language that supports parallelism and fits the require-
ments stated above . In the following discussion, it is
assumed that the reader is familiar with Ada . For a brie f
overview of the language, see the original version of thi s
paper [CIM88b] . More detailed references include text-
books (e .g . [Bar84]) and the Language Reference Man-
ual [LRM83]. An example of an algorithm suitable fo r
running on a hypercube and coded in Ada can be foun d
in [CMV86] . This program finds all solutions to the n
Queens problem concurrently .

The key to establishing a parallel language on a multi -
processor is the run-time system . Before discussing this ,
brief introductions to the hypercube architecture and th e
Ada language are given . Then, the run-time system com-
ponents necessary to support an implementation are dis-
cussed . Following that, the approach taken to distributin g
these components across the processors of a hypercub e
is described . The status of our current implementation
on an NCUBE/ten, a commercial hypercube, is then pre-
sented as well as some concluding remarks regardin g
parallel languages and Ada in particular .

2 The Hypercube Architectur e

A hypercube computer consists of several microproces-
sors interconnected by communication links . A hyper -
cube of dimension n is a multiprocessor with N = 2 "
processors . Each processor is directly connected vi a
communication links to n neighbors . An operating sys -

tern kernel supports store and forwarding of message s
so that processors that are not neighbors can still sen d
messages to each other through intermediate processors .
The maximum number of distinct communication links
that must be used to transfer a message between any tw o
processors is n, the dimension of the hypercube . Fig-
ure 1 shows hypercube graphs of dimension zero, one ,
two, three, and four. The nodes in the graphs represen t
processors and the edges represent communication links .

In the case of the NCUBE machine, each processor has
its own local memory (512 K-bytes) and the hypercub e
array is managed by a host computer (an Intel 8028 6
based system). The configuration used in our work a t
The University of Michigan is an NCUBE/ten which i s
partially configured with 64 processors but has the capac-
ity to hold 1024 processors . The processors are Vax-like
32-bit microprocessors with IEEE standard P754 floatin g
point capability . Each processor runs an operating sys-
tem to support communications called Vertex, as note d
above . The host runs a multi-user Unix-like operatin g
system called Axis . Axis allows the hypercube arra y
to be partitioned into subcubes that may be allocated t o
different users . More details on the NCUBE architec-
ture can be found in [HMS86] and more information o n
Vertex can be found in [MBA86] .

As a final point, we note that our run-time system for a
hypercube multiprocessor is suitable for any distributed -
memory multiprocessor provided minimal support for in-
ternode message passing (comparable to Vertex) is pro-
vided . In particular, the hypercube can be used as a
model for a generic system of loosely coupled homoge-
neous processors . The number of processors used in th e
hypercube can be varied, and the kernel operating system
shields the run-time system from details of the processo r
interconnect scheme . For this reason, we chose the hy-
percube computer as our testbed for the development o f
a distributed run-time system for Ada .

3 Run-Time System Requirement s

Because of the large number of features available in th e
Ada language, there are many operations which must b e
included in the run-time system . These run-time syste m
requirements can be specified independently of the targe t
architecture . They are summarized in the points below .

Memory Management In addition to supporting th e
normal allocation and deallocation of dynamic storage ,
a mechanism must be established to support the shared -
memory model of Ada . This is necessary for the cas e
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is necessary . A mechanism to protect shared data tha t
closely resembles monitors can be easily implemented a t

the language level using tasks .

The run-time system must also support the dynami c

allocation of memory objects of all types including tasks .

Dynamically created tasks must also have their stack s
linked into the cactus stack.

0 - 0
n=2

	

n= 3

n= 4

Figure 1 : Hypercubes of dimension 0, 1, 2, 3, 4

where tasks are nested and may reference variables i n
an enclosing task. This requirement is more complicated
than the case of nested blocks, because each task als o
needs its own independent stack space . The approach
taken is to allocate a fixed amount of stack space fo r

each stack and interconnect them in a cactus stack. In
this data structure, a task's local stack space points back
into the stack of its parent where visible variables, sub -
programs, and/or tasks may be located . This structure
allows several tasks to share the trunk of the cactus stac k
while still maintaining their own individual stacks .

Clearly, it is possible for several tasks to access a
shared variable . It is the responsibility of the program-
mer to ensure mutual exclusion of these accesses if it

Task Activation and Termination The language rules
for Ada specify that activation and termination of task s
be synchronized . A task may not activate until all o f
its children have been activated . Conversely, a task may
not terminate until all of its children are terminated . In
the case where a task depends directly on a block o r
subprogram, the execution of the parent code may no t

pass an end or return statement until the child task is

terminated . Tasks may also be abnormally terminated b y

an abort statement, with the abnormal termination bein g

propagated to all dependent tasks .

These rules provide for orderly management of th e

cactus stack, but require additional work by the run-tim e
system. Several different task states are necessary s o
that the run-time system can coordinate the activatio n

and termination . Tasks must be aware of their depen-
dents and a mechanism for communicating state change s

among these tasks is needed . Support is also needed for

processing abort statements and the terminate alternativ e

of the select statement .

Timing Support The notion of time is provided by Ad a
and is available for use in the form of a time-of-day clock ,

task delays, and time limits on task communication . Al-

though not required by the language, the run-time syste m

may also support the time-slicing of multiple tasks on a

single processor. Since this is usually desirable, a single
interrupting count-down timer (interval timer), normall y

available, should be dedicated to this purpose .

The strategy for managing several time delays and lim-
its is based on the time-of-day . The run-time system

manages a queue of events, a timed events queue, tha t

is ordered in increasing time-of-day values . Whenever

a time-slice interrupt or system call is made, a check i s

performed to see if the current time-of-day implies that
any delays or limits have expired . If so, the associate d

events are processed and removed from the queue . Obvi-
ously, with this scheme it is possible for a delay or tim e
limit to last longer than specified . However, the lengt h

of the delay or time limit can be bounded by roughly the
delay value plus the time-slice value .

This scheme may also be used in conjunction with a n

additional interval timer that is not used for time-slicing.
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At each interrupt, the next delay interval in the list i s

loaded into this timer. In the case where a second time r

is not available, a time-of-day clock is relied upon . If

such a clock is not available in hardware, careful us e
of the time-slicing interval timer is required . A schem e
for using a single timer to implement all timing support

(i .e . time-slicing, time-of-day, and delays) is described i n

[CMV87] . This scheme has yet to be extended to cove r

the multiple processor case, however . This problem i s
discussed in Sec . 4 .2 below .

Task Communication A major requirement of the run-
time system is support for the rendezvous mechanism .

This must cover the simple, conditional, and timed en-

try calls as well as the various alternatives of the selec t
statement for accepting entry calls . Entry queues must be
provided for each entry to store pending calls that canno t
be immediately accepted. Workspace for rendezvous pa-
rameters must also be provided . Figure 2 shows a typical
entry queue data structure and the associated task contro l

block (task control blocks are described below) .

Next Pt r

Paramete r
Spac e

Figure 2: Task control block and entry queue .

The run-time system implements the necessary syn-
chronization through the use of several additional tas k

states . Calls that cannot be immediately accepted ar e

placed in entry queues, and also added to the timed event s

queue in the case of a timed entry call . In case of a cal l

time-out, the entry call is removed from the entry queue .

Tasks accepting entry calls take them from the appro-
priate queues, or wait for one to arrive depending on

the accepting code used . If a time bound is placed i n
a select statement, an entry is made to the timed event s
queue . When the delay expires, the task moves on to the
next statement beyond the select if no call was accepted .
Guards for accept statements are evaluated by code gen-
erated by the compiler and their values are passed to th e
run-time system .

Run-time system calls are made by tasks attempting t o
call or accept an entry . The run-time system must pro-
vide mechanisms for exchanging state information an d
rendezvous parameters between tasks in addition to th e
requirements stated above .

Exception Handling and Propagation Exception han-
dling is provided in Ada as a means for recovering from
error conditions . When an exception occurs, two case s
must be considered: 1) the exception is trapped by either
the operating or run-time system, e .g ., in the case of di -
vision by zero ; or 2) the exception is detected by eithe r
the run-time system or generated code, e .g ., in the cas e
of a tasking error or an array bounds violation . When an

exception occurs, a branch to the handler for that excep-
tion occurs . This address is contained in the current cal l

frame . If no handler exists at this level, the exceptio n

is propagated up the dynamic calling chain until eithe r

a handler is found or the program is aborted (except i n

some cases as noted below) .

It is also possible in some cases to propagate excep-
tions between tasks . When a task is elaborated, if an ex-
ception occurs, it is propagated to its parent task . Also ,
an exception may be propagated during a rendezvous i f
the called task has no handler or if the calling or calle d
task is aborted . Other than these situations, exception s
are not propagated outside of tasks .

The run-time system then, in addition to detecting an d
trapping exceptions, must ensure that proper handlers ar e
found by propagating exceptions either by rolling bac k
the call stack or by notifying a task .

Task Scheduling The tun-time system must provide a
task scheduler, which may involve time-slicing as dis-
cussed above . The scheduler must switch contexts be-
tween tasks at scheduling points by saving state, selectin g
another task to run, and dispatching that task . The stat e
of a task is saved by storing the program status word
and program counter and saving all necessary registers
in the task's local task space . Scheduling points occur
whenever operating system calls, run-time system calls ,
or time-slice interrupts are made . Scheduling should b e
fair and account for task priorities if they are present .

As an aid to the scheduler and run-time system in

Task Control Block

	

Entry Queu e

Procces s
Inf o

Stat e

Head Pt r

Tail Pt r

Guard Valu e

Other Into

Cali Info

Next Ptr

Paramete r
Space

Call Info

Next Ptr u- .

Paramete r
Spade

Call Into -4-8J
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general, each task has a data structure referred to as

a task control block (tcb) as shown earlier in Fig . 2 ,

This structure contains the task identifier, program statu s

word, program counter, state identifier, local stack space ,
pointers to parent's and dependent's tcbs, pointers to ren-
dezvous parameter space and entry queues, and possibly
other information. These tcbs may be linked in a circu-
lar list or linked into queues depending on their state . A
ready queue of tcbs is kept in order of priority .

Additional Requirements Other run-time system re-
quirements include support for generic units, com-
piler attributes, I/O, predefined packages, and interrupts .
Generic units are mainly supported by the code genera -
tor, but may require some run-time type checking . Som e
compiler attributes are queries to the run-time system re -
questing basic information, e .g ., E'COUNT returns the
number of tasks currently waiting on entry E . These are
supported as calls to the run-time system . I/O, predefine d
packages, and interrupts are all highly system dependen t
but each has a language level specified interface . The

role of the run-lime environment in this case is to imple-
ment that interface . Each of the above listed features i s
discussed in more detail in [ClM88a] .

4 Distributed Run-Time Syste m

In order to support the distributed execution of a single
Ada program on a hypercube multiprocessor, the run-
time system must be extended to account for multiple
processors that lack a common shared memory. In an
effort to keep the requirements of the run-time system a t
a reasonable level, certain restrictions are placed on the
units of an Ada program that may be distributed acros s
multiple processors . We examine these restrictions in
the next section, and then present the associated run-tim e
system requirements in the following section . Consider-
ation is then given to relaxing these restrictions at th e
expense of additional run-time system overhead . Thi s
may be desirable in the case of a target machine wit h

very fast interprocessor communication .

4 .1 Language Units of Distributio n

The Ada language definition does not specify how a pro -
gram is to be partitioned for execution on multiple pro-
cessors . This decision is left to the implementor . We
have chosen to restrict the allowable units of distributio n
so that a reasonable amount of granularity may be ob-
tained without unnecessarily complicating the run-time
system. This was also one of the goals of the study done

in [VMB89] and [Mud87], where library packages and li-
brary subprograms were proposed as units of distribution .
They were chosen so as to reduce the number of potentia l
remote references and to eliminate the need for cross -
processor dynamic scope management . For example, th e
above units of distribution ensure that nested blocks an d
subprograms cannot be remotely located from their en -
closing scope . However, as discussed in [CIA/188a], more
flexibility is desired for distributing Ada programs on a
large-scale distributed-memory multiprocessor such as a
hypercube . To allow for this, we propose the same units
as in [VMB89], but also allow tasks that are declared o r
have their types declared in a library package specifica-
tion to be distributed . We also allow these tasks to be dis-
tributed when they are array components . This schem e
allows tasks that are dependents of library packages t o
be distributed, but requires that tasks nested within othe r
tasks reside on the same processor as their parent . This
follows from the fact that nested tasks must be declare d

in the parent task's body, which must be defined in a
package body, and such tasks are not allowed to be dis-
tributed according to the rules given above .

These units of distribution allow a large number o f

tasks, possibly identical, to be distributed to separat e
processors while still retaining a flexible naming schem e

[ClM88a] . This allows SCMD style algorithms to be eas-
ily supported within the parallel language . Also, these
distributable units save the run-time system some effort ,
by not allowing nested tasks to be distributed . This re-
striction simplifies the implementation of task termina-
tion via the terminate alternative of the select statement ,
and prevents the need for cactus stack pointers to cross
processor boundaries, thus reducing the number and typ e
of potential remote references .

In order to further simplify the run-time system, ou r
initial approach disallows the dynamic migration of task s
once they have been assigned a processor . Instead, stat-
ically declared tasks, as well as library packages an d
library subprograms are assigned a processor at compile -
time . Dynamically created tasks are loaded onto the pro-
cessor executing the allocating statement and are there -
after prohibited from moving . While this scheme does
not allow for dynamic load balancing of tasks, it doe s
simplify the run-time system's job of locating tasks an d
does not violate the restrictions stated in the above para-
graph . The prospect of migrating tasks is discussed fur-
ther in Sec . 4 .3 below .

4.2 Run-Time System Components

The units of distribution together with the target archi-
tecture dictate the specific requirements of the run-tim e
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system. A summary of these requirements is outline d
in the subsections below . Additional details regardin g

these run-time system components including implemen-
tation strategies can be found in [CIM88a] .

Run-Time System Kernel The first step in implement-
ing the run-time system for a hypercube target is to repli-
cate the task scheduling kernel on each processor . Along
with this, the various data structures associated with a
particular task should be located on the same processo r
as that task . These data structures include tcbs, entry
queues, and rendezvous work space .

In order to support language features across processo r

boundaries, the run-time system needs an interprocesso r
communication facility . In most cases, this is provide d
by the operating system . In our implementation on the
NCUBE, we made use of the existing store and forward
communication facility, Vertex . Because of the need fo r
communication between processors that do not share a
physical memory, a message passing based run-time sys-
tem was designed. This system implements all communi-

cation between tasks in the run-time system as messages .
A queue of pending messages is read and processed at
each scheduling point . The processing of messages re-
sults in changing task states, system queues, or sendin g
more messages . The inspiration for the message base d
approach came from the work described in [Wea84] an d
[FiW86] . An implementation of a partial run-time sys-
tem has been built and is described in [CMV87] . This
implementation provides the basic foundation for build-
ing a complete Ada run-time system .

Memory Management As mentioned in Sec . 4 . 1
above, the units of distribution and restriction on tas k
movement eliminates the possibility of cactus stac k
pointers crossing processor boundaries . This allows eac h
processor to manage a cactus stack in the same manner
as the uniprocessor case . All cactus stack addresses are
then local without any need for remote memory refer-
ences involving message passing .

In the case of dynamic non-stack allocation and deallo-
cation of objects, the run-time system manages a heap o f
storage and is responsible for error checking on request s
and raising an exception when storage is exhausted . In
most cases, the run-time system allocates blocks of mem-
ory from the operating system, which is the situation wit h
Vertex . The run-time system, rather than the operatin g
system, should allocate large blocks to form a heap an d
also manage the heap. This reduces the number of call s
to the operating system. An additional benefit of thi s
scheme is that the tun-tine system provides an operatin g
system independent interface for the code generator .

The class of objects that may be allocated dynamicall y
includes tasks . In some cases, storage must be allocate d
for the code as well as the data structures associate d
with the task . The run-time system must also initialize
this storage . For example, if the task being created has
its type defined in the package residing on the proces-
sor executing the allocation, only data structures need b e
allocated for the task as the code is reentrant and ca n
be shared . Otherwise, the code must be loaded from a
remote processor, using the message passing primitive s
provided .

Task Activation and Termination The synchroniza-
tion of task elaboration, activation, and termination i s
easily implemented in the parallel case . This is due to the
language units of distribution and the restriction of tas k
migration . These rules create a situation where the onl y
task dependency to cross a processor boundary is that of
a task depending upon a library package . A library pack-
age is not an active body of code, and the language defi-
nition states that the termination of a task that depends o n
a library package is not defined [LRM83] . This gives th e
implementor the freedom to let tasks that are dependen t
on packages hang indefinitely on a terminate alternative ,
but places the burden of detecting program completio n
on the programmer, who may terminate tasks explicitl y
with the abort statement . It is possible, however, for th e
rn-time system to support collective termination of dis-
tributed tasks . Strategies to implement this support hav e
been proposed and are discussed in Sec . 4.3 below .

The minimum requirement, then, for support of syn-
chronized activation and termination is the same as in th e
uniprocessor case . Since all dependencies are local to a
given processor, task states can be readily examined an d
altered by the run-time system kernel . This is also true o f
tasks terminating via the terminate alternative of a selec t
statement . Quiescence of tasks all waiting to terminat e
on a single processor can be detected in a straightforwar d
manner [BaR85] .

Timing Support The approach for implementing basi c
timing support is to replicate the linked list structure o f
timed events on each processor. This assumes that each
processor has a mechanism for keeping track of at leas t
the relative passage of time . This capability is usually
supplied in the form of an interval timer on each proces-
sor, as is the case with the NCUBE . The linked list on
each processor contains records of delay related events
and rendezvous time-outs for tasks residing on that pro-
cessor.

As stated in Sec . 3, it is possible to use a single inter-
val timer to manage both task time-slicing and to keep
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track of the relative time since the processor was initial-

ized. What is needed, though, is a common sense of

the time-of-day by all processors to support the CLOC K

function of the CALENDAR package . This function re -
turns the absolute time-of-day when called . In principle ,
the CLOCK function may be supported by synchroniz-

ing all interval timers before beginning any program, the n
keeping track of time passage as before . However, thi s
scheme requires a significant amount of start up over -
head, and is subject to drift because ticks can be los t
during timer manipulation .

Another possible solution is to implement a centralize d
time-of-day server. However, the time delay in access-
ing such a server may be too great to make the returned
value reliable . The value may be adjusted to compen-
sate for this overhead, but the exact amount may be in -
determinable, due to variable delays in message passin g
and conflicts arising from multiple simultaneous requests .
This approach is discussed further in Sec . 4 .3 below .

The best solution to this problem is support in hard -
ware for two timers per processor : an interval timer and a
time-of-day clock This allows time-slicing and the even t
queue to be managed as described above, but the time-of-
day is provided by a separate clock. A similar solution
proposed in [VoM87b] utilizes a time-of-clay clock alon g
with a readable/writable compare register . The compar e
register contains an absolute time value that indicates
the next timer interrupt . In the case of either solution ,
though, the time-of-day clocks for all processors mus t
be synchronized . This can be achieved by supplying all
ticks from a central oscillator, as is currently done wit h
the interval timers on the NCUBE .

Task Communication In common with the support for
other language features across processors, a message
passing scheme is needed to implement the rendezvou s
mechanism. These messages must indicate the task state
changes that are needed in executing a rendezvous as well
as transmit parameters . Our approach uses a minimu m
number of messages .

The message passing begins with the calling task re -
questing the rendezvous . In the case of the simple call ,
the request is sent with parameters and the calling tas k
waits for a reply with results (Fig . 3) . If the call is con-
ditional, a call message with parameters is also sent, bu t
the run-time system on the receiving node sends a neg-
ative reply if the called task can not immediately accept
the rendezvous . If the called task is waiting to accept th e
call, a reply message is not sent until the critical section
is executed and results are returned. This is possible be -
cause the calling task is suspended awaiting a reply i n
both cases .

	

Calling Task

	

Accepting Tas k

Simple Entry Call

	

Wait for Call

Simple Call Message

	

Suspend

	

Critical Sectio n

Return Mossag o

6-a—~

Rosumo Execution

	

Resume Executio n

Figure 3 : Messages for simple entry call .

The message passing protocol for the timed entry cal l
is more complex. A total of four messages are requi red
to execute the rendezvous . As before, a call message i s
sent initially, but an entry to the timed events queue i s
also made. This entry in the timer queue is based on the
time-out interval supplied in the call . When the accept-
ing task is ready to execute the critical section, a repl y
message is sent indicating this fact . If the time-out has
yet to occur on the calling node, a "go ahead" message
is sent, and the rendezvous is executed . Upon comple-
tion, a reply message is sent with results . If the time-ou t
does occur before the go-ahead is sent, an abort messag e
is sent to cancel the request . This message identifie s
the specific call to be canceled, and allows the calle d
task to recover whether or not it had sent a ready mes-
sage . The protocol described here for the timed entr y
call was modeled after that in [Wea84] . It is also simi-

lar to the one recommended in [VoM87a], but the timin g

in that scheme is performed on the called processor in -

stead of the calling processor. Figures 4 and 5 show th e
message protocols for successful and unsuccessful timed
entry calls respectively .

As for the accepting task, message replies and state
changes are processed according to the type of accept .
In the simple case, the incoming request is placed i n
the appropriate entry queue unless it can be immediatel y
serviced . When it can be serviced, the first message in th e
queue is removed, and the reply is sent after execution o f
the critical section . If the task attempts a simple accep t
when no calls are pending, it waits indefinitely until on e
arrives .

In the case of a select statement surrounding severa l
accepts, the task executes any one of the entries with a
true guard from those that are queued . If no such call s
are pending, the task waits for a call to arrive . If a delay
alternative with a true guard is present, an entry to th e
timed events queue is made to bound the amount of tim e
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Figure 4 : Messages for successful timed entry call .
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Resume Execution

	

Resume Executio n

Figure 5 : Messages for unsuccessful timed entry call .

that the task will wait for a call . In the case of an els e
alternative, the code following the else is executed if n o
calls are pending on the selected entries with true guards .
If a terminate alternative is present instead of a delay or
else alternative, the task will wait on the selected entrie s
if none are pending until a call arrives or the task i s

terminated by the run-time system .

Further details of this implementation can be found i n

[CLM88a] and [CMV87] .

Remote Subprogram Call and Object Referenc e
Support for remote subprogram calls and remote object
references must be included in the run-time system since

these entities are bound to processors according to th e
package they reside in, and packages may export inter -
faces via specifications to code units on other processors .
It is also possible in some cases for objects that are de-
clared in a. package body to be visible to tasks taken fro m
the same package but distributed to a remote processor .
References to these objects and subprograms must b e

implemented via a run-time system call . Among the pa-

rameters to such a call is the identifier of the processor

holding the object . This is known to the caller as lon g
as the binding specification is made when the packag e
containing the object is compiled .

Remote references can also occur through the use of
access variables . To address this problem, access val-
ues are implemented as processor—address pairs . Each
pointer reference then results in a check of the proces-
sor part to see if the reference is remote . If it is, a cal l
to the nun-time system is made . An alternative solution
would be to disallow the passing of pointer values acros s
processors, but this would violate the language definition .

In all cases of remote reference, the referencing task i s
blocked while the run-time system makes the request b y
sending a message to the kernel on the processor holdin g
the object or subprogram . Because the remote processo r
may be more than one hop away on the hypercube an d
the run-time kernel at the remote site must process th e
request before responding, the requesting processor per -
forms a context switch to allow another task to run while
awaiting a reply . The reply message may contain an ac-
knowledgement of a write to an object, the value of a n
object being read, a function return value, or parame-
ters returned from a procedure . The value returned i s
passed back to the requesting task . In the case of a re -
mote subprogram call, the call parameters are placed i n
the message and the run-time system at the receiving en d

places these values on the stack space of a server task ;

this task is scheduled like any other . This approach i s
similar to the scheme described in [BiN84], except there
is no need to bind the caller and callee dynamically, be -
cause the location of the subprogram is known when i t
is compiled .

Exception Handling and Propagation The additional
support for exceptions needed in the multiprocessor cas e
involves the propagation of exceptions across processors .

This can occur when exceptions are raised in remote sub -
programs where there is no handler or in the case of a n

exception in a rendezvous between tasks on different pro-
cessors . In these situations, the return messages normall y

sent must include an indication of the exceptional con-
dition that is being propagated . In the case of a callin g
task in a rendezvous being aborted, a message must be
sent to cancel the rendezvous if it has not already started .

If it has begun, the called task executes the rendezvou s
as it normally would and no exception occurs .

4 .3 Extensions for Fast Communicatio n

In the presence of very fast internode communication
time, it may be desirable to remove some of the restric -

Calling Task

	

Accepting Task

Timed Call McFUgo

	

Wait for Cal l

Delay

	

Accept Message

	

Accep t

__.--- -

Confirm Messag e

Suspend

	

Return Message

	

Critical Sectio n

Resume Execution

	

Resume Executio n

Timed Entry Cal l

Ada Letters, March/April 1989

	

Page 125

	

Volume lX, Number 2



tions on program distribution and change the implernen-
tation of the run-time system . Possible changes would
affect task migration, task distribution, a network sens e
of time, and remote object access . The possibilities ar e
discussed in the paragraphs below .

Migration of Distributable Tasks One approach in al -
lowing the migration of tasks is to allow only tasks tha t
are currently distributable to be migrated . This may in-
volve the implicit migration of nested tasks, in order to
preserve the guarantee that nested tasks all reside on th e
same processor as their parent . In all cases of task move-
ment, all data structures associated with the tasks as well
as all code must be moved via internode communication .
In the case where a large amount of memory is available
on each processor, it may be possible for each node t o
retain a copy of all migratable code so that code move-
ment is not necessary . The advantage of this approach
to migration is that it does not violate the assumption s
that simplify the cactus stack implementation and syn-
chronized task termination .

Distribution and Migration of all Tasks This unre-
stricted migration is implemented as in the case above ,
but the run-time system must also support cactus stack
pointers across processors and the synchronized activa-
tion and termination of tasks across processors includ-
ing the termination of tasks via the terminate alternative
of the select statement . Cactus stack relative references
would have to be modified to incorporate the use of point-
ers that indicate processor as well as address . Synchro-
nized activation and termination can be implemented i n
a straightforward manner using message passing whe n

states need to be altered. A solution for the simple case
appears in [Wea84], and a solution for the case of the ter-

minate alternative of the select statement can be obtaine d
by adding messages to the solution given in [FSS87] .
However, unrestricted migration of tasks also causes a
problem when a task needs to be located . A possibl e

approach to solving this problem is to adopt the metho d
presented in [Ros87] .

Time-of-Day Server In the case where only a single
interval timer is available on each processor, a central-
ized time-of-day server is a possible approach to solvin g
the common system wide sense of time problem . The
usefulness of such a timer is dependent on the its access
time with respect to its resolution. In addition to the tim e
needed to read the tuner, the access time is made up o f
the communication delay and the time to resolve acces s
conflicts if more than one processor requests the time-of-
day simultaneously . If this access time can be limited to

a small value in comparison with its resolution, then a
centralized time server can be used to support a commo n
sense of the time-of-day throughout the system .

In the case of the hypercube, the time server can be
implemented by a host processor or a dedicated nod e
processor. The communication delay in accessing th e
timer is then bounded by the maximum number of hop s
between the caller and the time server . In the case of a
dedicated node processor as the server, this number o f
hops is the dimension of the hypercube .

Remote Object Reference In the presence of fast com-
munication times, it may be desirable to implement a
remote object reference as a processor synchronous
operation, as suggested in [LeB82] . In this approach ,
the referencing processor remains idle while it await s
a response from the called processor's run-time system .
This approach is preferred if the remote reference can be
performed in an amount of time less than it takes to per -
form a context switch to another task . In the case of the
hypercube, it may be necessary to employ this strateg y
in only some of the remote references . The decision of
whether or not to schedule another task is based on th e
number of hops away the referenced variable is, sinc e
this determines the lower bound on communication time .

5 Status and Conclusion s

The current implementation of the Ada min-time syste m
on the NCUBE/ten contains support for task scheduling ,

rendezvous, delays, and synchronized activation and ter-
mination . Initially, a general approach was taken an d
the message passing schemes discussed above were used
in support of features executed within one processor as
well as across processor boundaries . This approach wil l
simplify the transition to incorporate the capabilities de -
scribed in Sec . 4.3 above, but may cause unnecessary
overhead given the current restrictions . In some cases ,
the run-time system code is being modified to take advan-
tage of these restrictions . The two approaches may the n

be compared through performance measurement, usin g

the techniques and algorithms given in [CDV86] . More
details regarding the actual implementation and an ex -
ample of its use may be found in [CMV87] .

Several conclusions can be made about parallel lan-
guages on distributed memory multiprocessors . Thes e
range from the programmability of such machines to th e
structure and implementation of the run-time environ-
ment . Based on the above discussion, we can make th e
following points :
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• Parallel languages improve the multiprocessor pro-
gramming environment . Such languages allow mul-
tiprocessors to be coded with a single program that
provides abstraction through high level structures .

The benefits of this approach include strong typ e
checking, multitasking, and the opportunity to create

coherent parallel programs . An additional benefit o f
parallel languages is the reusability of machine in -
dependent concurrent software that is coded in thes e
languages .

® Specification of the allowable program units of dis-
tribution greatly impacts the requirements of th e

runtime system . Placing some straightforward re-

strictions on the units of distribution can simplify th e
duties of the run-time system without unreasonabl y

hampering the programmer or violating the languag e
definition .

® Even when supporting a large number of languag e
features, efficiency can be achieved if support for
costly operations does not hamper the implemen-
tation of other operations . This is a goal that we
wanted to achieve, and it influenced the implemen-
tation and choice of units of distribution . Imple-
menting intraprocessor task rendezvous through di-
rect queue manipulation instead of message passing
and restricting task migration to allow only local
cactus stack pointers are instances of this approach .

® Developing run-time support for Ada on a paralle l
target provides valuable experience for the study o f
similar parallel languages on multiprocessors . The
units of the mn-time system were coded in a hig h
level language in our implementation and were or-
ganized into well defined modules . They can be
easily modified to provide specific support for other
languages that have similar models of concurrency ,

e .g ., Concurrent C [GeR86] .
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