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Abstract 

This  paper  addresses  the  problem of extracting  certain 
types of surfaces for 3-dimensional  object  recognition in 
the presence of partial occlusion and noise  using range 
information. We restrict  consideration to  man  made in- 
dustrial  parts.  In  this  case, we need only work with  a 
small  set of surface  shapes  such  as  planes,  cylinders,  and 
spheres  since  such  shapes  are  common  in  industrial  parts 
and it is only  necessary to recognize and  locate  a sufficient 
set of surface  regions to uniquely  distinguish the  part  be- 
ing  observed from all others  that might be  present. We 
describe  a way of extracting  the  parameters of these  types 
of surfaces  using  normal  analysis. The use of surface  pa- 
rameters  then allows efficient and  robust use of a  match- 
ing  process  for  object  recognition and pose determination 
even though  there  are  many undefined or occluded surface 
regions. 

1 Introduction 

As a  branch  of  vision,  range  image  analysis  has re- 
ceived great  attention  due  to  the  direct  geometrical infor- 
mation  it provides, and recent improvement of the  speed 
and  the  accuracy of range  imaging  systems[20]. For the 
most  part, however, the  input models of the  objects un- 
der study have  been restricted  to  a  small  set of surface 
types or features in order  to  reduce  the  computation  time 
or memory  space  required,  or  to simplify the analysis. 
For example, \7,8,11\ used  sparse  data, while \11,12,15] 
concentrated on  using  only  edges or occluding  bound- 
aries.  In  other  cases,  simple  surfaces  such as  planes  have 
been reconstructed for more  reliable  and  accurate  analy- 
sis[1,3,5,6,10, 11,14,15,18]. In  this  case  objects were mod- 
eled or approximated  as  polyhedrons. 

In more  sophisticated  techniques  that  can  handle  curved 
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surfaces,  certain  sets of quadric  surfaces  have  been ex- 
tracted[l,6,9,13,14,18]  and  represented  in  terms of the 
quadric  equation. None of these  representations  can de- 
scribe  the  general  objects  without  approximation. While 
it is theoretically  possible to perform  a higher level analy- 
sis by extracting  quadric  parameters  and using those pa- 
rameters in matching,  in  our  experience,  the  parameters 
extracted  from  the coefficients  in the quadric  equation 
are very  sensitive to noise  in the original  image. For more 
general  objects,  a  range image segmentation  method  has 
been proposed using  local curvature  information[2]. How- 
ever,  in  this  case no  higher level processing  for matching 
was proposed. 

We observe that it is not  necessary to work with  a  set 
of surface  shapes large enough to describe the  entire sur- 
face of a  large  number of parts.  It is sufficient to work with 
a  subset of all surface  types which are  present in adequate 
proportion to allow recognition and pose estimation.  In  a 
man  made  environment, a small  set of surface  types like 
planes,  cylinders, and spheres,  constitute  the  majority of 
surfaces of objects[4],  and  thus make a  reasonable  set of 
surfaces to  be  examined. Several methods of extracting 
planes  and ( a  subset  of)  quadric  surfaces have been  stud- 
ied.  Optimization  and eigenvalue analysis[l,6),  quadric 
invariants[g], modified  Hough transforms[ 161, or modified 
Hough transform  with  multiple  computation  with several 
window sizes[ €31 have been used to classify  different  types 
of surfaces.  Eigenvalues  or  quadric  invariants are good 
discriminators  in a mathematical sense, but, in a compu- 
tational  sense,  are  often  too sensitive to noise and  quan- 
tization  errors. 

Rather  than use  quadric  parameters or eigenvalues, 
we calculate the  geometric  properties of a sufficient  set of 
shapes,  planes,  cylinders  and  spheres, to  allow recognition 
in the presence of occlusion and noise. The calculations 
are  based  upon  an  analysis of the  surface  normals. %'e 
also work with  entire regions  in the  image  rather  than 
small  patches in order to encompass  enough of the curved 
surfaces to allow us to  extract reliable estimates of the 
parameters. Our approach uses a mixture of histogram- 
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ming and  parameter  fitting  to  obtain  good  estimates.  The 
techniques are also amenable  to efficient processing  on a 
parallel  computer  structure  such  as  a  hypercube. In this 
paper, we address  primarily  the issue of extracting de- 
fined  surfaces and  their  features  out of several  undefined 
regions in an image. 

2 Overview of segmentation pro- 
cedure 

The  system uses range images and models of the pos- 
sible  parts  as  inputs  and  produces  a list of (object  iden- 
tity,  object pose)  pairs  as an  output.  There  are  two basic 
parts  to  the  system,  a low  level subsystem  that  segments 
the  range image into regions of like surface  type  and de- 
termines  the  surface  parameters for  these  regions, and a 
high level subsystem  that uses the surface  parameters in 
a matching scheme  for  object  recognition and pose deter- 
mination. In  this  paper, however, we discuss  only the low 
level process. 

We first calculate  the  normal  vectors of the image 
points using a  simple  operator. In the  vicinity of jump 
boundaries, the  normal  vectors  are not  defined and  the 
simple operator  used yields  very  large  values of the  x or 
y-directional  component,  and z directional  normal  values 
near  zero. Thus,  the  jump  boundaries  can be found by 
thresholding the z directional  normals.  Planes  are  de- 
tected by histogram  analysis of their  normal  vectors,  and 
parameters of planes and  their regions are  determined. 
The  jump  boundaries or planar regions are  then used to 
segment  the  remaining regions. We apply  a  surface find- 
ing  process to these  and  extract  cylinders  and  spheres. 
These regions and  their  parameters  are  also  recorded.  The 
surface  finding process is a complex system of cross prod- 
ucts,  projections,  historgramming  and  parameter  fitting 
which we describe in the  next two  sections. 

3 Normals and surface equations 

We can  represent  the  depth values  in a  range image 
as a function of x  and  y  coordinates, z = g(x, y) ,  where 
g is of type C' except at  jump  boundaries  and  at  a  cer- 
tain  internal  boundaries. In this  section we describe  a 
method of calculating  surface  normals that will be  used 
in segmentation of different types of surfaces,  and we also 
show the  relations between the  normals  and  the  surface 
equations. 

3.1 Surface  normal 

If a  surface  can be  represented by a  function  which  has 
derivatives  within  a  certain  boundary,  the  normal  can  be 
calculated  within  the  boundary. Let z(z,y) = g(z,y). In 

our coordinate  system, z axis  comes out of the  paper. In 
a  small  neighborhood of a point (2, y) ,  we assume  that 
g(z, y) is C'. Then  the  unit  normal N = N(x, y) can  be 
calculated by the  equation, 

where V represents  the  gradient  operator. Since we as- 
sumed g(z, y) is C', first order Taylor approximations  can 
be made  within a small boundary  around  the  point (x, y) .  
In this  case,  the  first  order  equations  describe  a  plane. If 
x is a  point  on  the  plane,  then x . N = d,  where d is a 
constant, a x f b y  +cz  = d for some a,  6, and e .  If c = 0 we 
can never  observe the plane.  Hence  there  are  only  three 
independent  parameters, a,  6, and d ,  and we normalize 
c to unity. Then  the  plane  equation  can  be  represented 
as ax + 6y + z = d ,  or z = g(x,y)  = -ax  - by + d. The 
constants a and 6 can  be  found by the  equation, 

W x ,  Y) s ( x  + Ax,  Y) - g(z, Y) - a =  ___ = lim 
dz A 2-0 A x  

and, 

Then  an  approximation  to a is, 

-u ( i , j )  = z ( i  + 1,j) - z ( i , j )  

Since this  calculation is noise  sensitive, we modify the 
operator so that it reduces  the noise  sensitivity by av- 
eraging the value  in  nine  locations around ( i , j )  , i.e., 

2),(i + 1 , j  - I ) ,  (i + 1 , j  + I) ,  and (i + 2 , j ) .  Let 
ai,j = 1/2{(z(i--l,j)-z(i+l,j)}. Then  thex-directional 
normal is calculated by, 

( i - Z , . j ) ,  (2-1,j-1) ,  (i-l,j+l), (Z,j-2),  (Z,j), (Z,.i+ 

1 
9 

N ,  -(ai-z, j  + ~ ; - 1 , j - 1  + ai-l,j+l + ~ r i , j - 2  + 
~ , j  + a i , j+z  + ai+l , j -1  + ai+l,j+l + mi+z, j )  ( 2 )  

The y-directional  normal  can  be  calculated  similar way. 
Then  the  unit  normal is (N , / s ,  N v / s ,  l / ~ ) ~ ,  where s = 
d m .  N,  is considered  positive in  every  case. 
An interesting  characteristic of this  operator is that  it is 
simple to  calculate  and  proper for high  speed  computa- 
tion(5 by 7 convolution).  Another  point is that  if applied 
on jump  boundary, it gives  large  value of s ,  making z di- 
rectional  values  small.  Hence it can be applied  to any 
region  including jump  boundaries,  and  can  be  used  in de- 
tecting  jump  boundaries. 

3.2 Surface equations, normals and pa- 
rameters 

In this  section we will  use the surface  normals to  derive 
equations of planes,  cylinders,  spheres,  and  cones. 
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Let f (z, y ,  E )  = 0 be  the  equation of the  surface.  Then 
N = [N ,  N~ N,]' = Vf/ilVfi/ is a  normal  vector from a 
point of a surface. 

1. Plane: A plane is a  set of points  that  satisfies 
N . x = d ,  where x is a point  on  a  surface,  and d is a 
constant.  Two  planes  with  the  same  normals  and differ- 
ent d can  only  be  connected by a  jump  boundary. 

2. Sphere: A spherical  surface  can  be  determined by 
four parameters:  radius,  and  the  center of the  sphere 
which has  three  parameters.  The  relationships  between 
the  radius r ,  the  normal N,  the  center c can  be rep- 
resented by the  equation, (x - .)'(x - e )  = r 2 ,  where, 
c = (zo yo z , ) ~ .  If we expand  it, 

f(5, y, 2) = x2 + y2 + 2 - 2(zzo + yyo + zzo) 

+zi + y," + 2," - r2 

From N = Vf/i]Vfll,  we have, 

r N - x + c = O  (3) 

3. Cylindrical  surface : For the  moment,  assume  that 
the  axis passes through  the  origin of the  coordinate sys- 
tem.  Then,  the  equation of the  surface  can  be  represented 
as follows(see fig. I). 

IIX - (x .u)uII' = r2  
(x - ( x .  U)U) f (X  - ( x .  .)U) = XfX - XtU - u x 

= xt(1- UU"X = T 2  

t 

where 1 is a 3 by 3 identity  matrix, u = (u1,uz,u3)' is a 
unit  directional  vector of the axis of the  cylinder,  and r 
is the  radius of the  cylinder.  The  normal  at  each  point of 
the  cylindrical  surface  is, 

(1. - .;)x - u1uzy + U l U 3 2  

N = of = 1 [ u1u2x + (1 - u i ) y  t ~ 2 1 1 3 2  
Ilvfl: r 

u1u35 u2u3y + (1 - u:). 

or, in  vector  representation, 

r N  = (I - U U ~ ) X  (4) 

If the axis of the  cylinder  does  not  pass  the origin of 
the  coordinate  system,  there is a  translation  vector XO. In 

this  case x is replaced by x - x0 in the above  equations. 

4. Conic  surface : The  parameters of cones are,  the 
location of the  peak, x0 , the direction of the axis, u, 
and  the angle  between  the axis and  the line passing  the 
peak  and  one  point  on  the  surface of the  cone, 6. Let 
k = tan(0).  Then, as we can  see  from figure 2, 

(x - (x .  U)U}"X - (x .  u).) = k"(x. u)u}e{(x. u)u} 

After  some  manipulation we have , 
X ~ X  - 2(xtu)' + (1 - k2)(xtu)' = X ~ X  - (kz + 1)(xtU)2 = 0 

f(5, y, 2) = ( 2  + yz + 2 )  - (k2 - l ) ( Z U l +  yuz + zu3)Z = 0 

(5) 
If the  vertex is located at xg, then x is replaced by x -XO.  

The gradient of the  equations  are, 

where a = k2 + 1, and w = x . u. The  square of the 
magnitude of the  gradient  is, 

llvfllz = of: + of; + of: 
= 4(z2 + y2 + 2 - 2aw(su1+ yuz + zu3) + a2wZ} 
= 4 ( 2  + y2 + 2 2  + (a2 - 2 a ) d }  

= 4(k2 + l)k2w2 

and, 

N =  
1 2 - ( k 2  + l)(x .u)u3 1 

k(k2 + I)x . u 

4- 
Y 

X 

Figure 1: Cylindrical  surface  Figure 2: Conic surface 

After calculation of normals  and  determination  ofjump 
boundaries,  surfaces  are  extracted in the  order of planes, 
cylinders,  spheres. We process the regions  divided by 
jump  boundaries or region boundaries that  are  extracted 
in the  previous  step.  Extraction  process  stops  when  there 
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are no  regions to be  analyzed.  The  last  remaining  regions, 
if they  exist,  are  either  undefined  regions  that  cannot  be 
described by the defined  surface types  (within  certain  er- 
ror threshold) or too  small  to  calculate  meaningful  surface 
types. 

4.1 Plane  region  extraction 

Planes  are  easy  to  extract  compared  to  other  types of 
surfaces. But, in general,  there  are  still  numerical  prob- 
l e m .  For example,  it is difficult to  determine  whether 
certain line segment is a  part of a circle, part of a straight 
line, or neither of them. 

The  normals N, and Nv of every  pixel in range im- 
age  are  calculated  using  equation (2). The regions  where 
Iv, x 0 are classified as  jump  regions. In these  regions, we 
cannot  extract  any  type of regions  correctly.  Hence we ex- 
clude  these  regions from surface  detection  step.  With  the 
remaining  region(s), we form  a  histogram of N,. If there is 
a  sizable  plane,  the  histogram shows a  peak. Usually there 
are several  peaks.  Among  the  several  peaks we choose the 
highest  peak,  and find the values of the  peak.  Without 
noise there will be  a single  value. But in the presence of 
noise,  there will be  several  high  values  around  the  correct 
value.  To  detect  this, we smooth  the  histogram using a 
gaussian  filter h(z)  = &e-2'/202 , where (T = 5 .  After 

smoothing, we detect  two valleys around  the  peak.  The 
peak  value  between  the  valleys is used and  denoted P,. 
Then we extract regions corresponding  to  the  peak,  and 
make a histogram of Ny of the region, and find the  peak 
of histogram of Nv.  There  might be  several  regions  whose 
normals belong to Pz, and Pg. Among  these we choose 
the region in which the  area is maximum,  and  calculate 
the  parameters of the  plane. If the size of the region is 
greater  than some threshold, we extract  the region and 
register  plane  parameters  and  the  region.  These  steps  are 
repeated  until  no  further  planes  are  extracted. 

4.2 Cylindrical surface extraction 

When  the axis of the  cylinder  does  not  pass  through 
the  origin,  equation (4) becomes, r N  = (I - uut)(x-xo). 
The problems are  to  determine  the  parameters u, XO, and 
r ,  and  to  extract  only  the  regions  corresponding  to  the 
cylindrical  surface. 

First, we determine  the  direction of the axis  using the 
normal  vectors  calculated in the earlier  step.  From  the 
direction of the  axis we determine  a  rotation  matrix, R, 
such that, Ru = ( O , O ,  l)t. Using this  rotation  matrix we 
project  data to a  plane that is perpendicular  to u. By 
analyzing  the  projected data we determine  the  radius  and 
the  translation  vector, xg. We can also  remove  noncylin- 
drical regions by analyzing  the  projected  data.  In  the 
projection  process we determine  the two end  points of the 

axis in 3-D space. 

Direction of axis 
Every  normal  on  the  surface of a  cylinder is perpen- 

dicular to  the direction of the axis. If  we choose  two 
nonparallel  normals  on  the  surface,  the  cross  product of 
the normals  gives  the  direction of the axis.  To  overcome 
the effects of image  noise, we perform  the following steps. 

1. For each pair of unit  normals, nl and n2, nl . n2 < T ,  
calculate  cross  product of the  normals. 
(2' : a  constant) 

2. Make a histogram of the  x  directional  vector of the 
cross  product  and find the  maximum value. 

3. Make  a  histogram of the  y  directional  vector of the 
cross  product  and find the  maximum value. 

4. If steps 2, and 3 are successful,  a  candidate  axis 
direction is determined. If not,  next  region is chosen 
to  be  analyzed. 

The  candidate axis  direction is used in making  the  pro- 
jection  matrix. If some false peak  was  formed  by  non 
cylindrical  regions,  it will detected in the projection or 
fitting  step. 

Projection of data 
Once the  candidate  direction, u, is known, we project 

the  range  values  on  the  image to  the  surface  that is per- 
pendicular to  the axis. The projection  matrix R maps 
sampled  points  on  the  surface of the cylinder  onto  the zy 
plane. That  is, we develop the  transformation  matrix in 
such  a  way that  the  direction of axis u is rotated to  z axis 
in the  transformed  coordinates. If the  direction of the 
axis is correct  the  projection of surface data  to a  plane 
will be  an  arc or a  circle. 

R is a 3 by 3 orthonormal  matrices,  and  has  the  prop- 
erty  that Ru = (0 0 We assume  that u; + ui > 0. 
There  are  several  orthonormal  matrix  that  satisfy  the re- 
lationship.  One  matrix  can  be  derived  as follows, 

u2/s -ul/s 
R = U1U3fS -UZU~/'S - S  

u2  u3 [ u1 
O ] ( 7 )  

where, s = v w  . By multiplying R by surface  points 
and  taking  only 5 and y components gives the  cross sec- 
tion of the  projection.  From  this  cross  section, which is 
2-d circular  arc if cylindrical  region is projected,  the  center 
and  radius  can be calculated. If a  non-cylindrical  region 
is projected,  this  section shows other  forms. By fitting 
circles, we can  extract  radius  and  center, or we can  reject 
the  data if insufficient data fits to  a  circle. Non  cylindrical 
regions are  rejected in this  step.  Two  end  points of the 
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cylinder, i.e the location of the  cylinder is also calculated. 
Final  refitting  extracts only  regions corresponding  to  the 
extracted  parameters. 

4.3 Spherical region extraction 

For the remaining  regions the  strategy is to find out 
whether  there  are  possible  center  points  and  radii. If the 
evidence is strong,  the regions  corresponding to  the esti- 
mated  parameters  are  extracted.  This is similar to  the 
general  hough  transform[ 16,201, but different in that  the 
candidate  center  and  radius  are  calculated by geometri- 
cal  information and  normal of a sphere. A histogram(or 
1-dimensional  accumulator) for each of the  unknown pa- 
rameters is needed. 

In the presence of noise, we assume  that  t,he  majority 
of the  normal lines  pass within a  small  neighborhood of 
the  center. If  we pick two  points  on  the  surface,  the  two 
normals  may  not  meet a t  all. Hence,  as a candidate cen- 
ter, we choose the  center  point of a  line segment  that is 
perpendicular to both of the normals. If the two  normals 
meet,  the  candidate  center is the  meeting  point. 

Let m and n be  the  unit surface  normals at  points 
a and b respectively with m- # n . The  parametric 
form of the  straight line through a parallel to  rn is the 
set of x in E3 which can  be represented  by x = k m  + a, 
where --oo < ic < tm.  

Figure 3: 

Let l1 and l 2  be  two lines that pass  through a and 
b with  normals arm and n respectively, and let l 3  is 
perpendicular to both lI  and lz(fig 3). Then  the direction 
of l 3  is given as p = m X n. We want to  determine  the 
center  point of l 3  as the  candidate point of the  center of 
the  sphere.  The  parametric  equation of a plane  through 
a and  parallel  to  both m and p is x = h m +  kp + a: 
where, --oo < h < +a, -cc < k < +a. Let the point 
e be  the position  where  the  plane  and 12 meet  and let d 
the  point  where line 11 and Z3 meet. Since the  parametric 
form of l 2  is x = in + b, -cc < i < +cm, a t  e we have, 
e = h m + k p + a = i n + b , a n d h m - i n + b p = b - a .  
Here the values of h, i, k are  found by 

d can  be  found in the  same way, and  the candi- 
date  point is estimated  as i ( d  + e). Ideally the distances 
1 1  a - c 1 1  and 1 1  b - c 1 1  are  same,  and  they  are  equal  to 
the  radius. If either  normal is incorrect, or one or both 
of the  points a and b do  not lie on  the  surface of 
the spherical  region:  the  two  distances  are  not likely to 
be close. To eliminate  this  case,  the  distances  are  tested. 
That is. if 

for some 0 < a < t, then  the Tialue  of each  component of 
c is recorded. The  candidate  radius  value ; ( I 1  a - c 1 1  + 

I b - c 1 1 )  is recorded to  t,he  radius  histogram.  The pro- 
cess of finding candidate  center  and  radius is performed 
for sampled  pair of normals  whose  normalized  inner  prod- 
uct is less 1 - E .  If there  exists a peak for  each of the four 
histograms? a spherical  region is extracted by refitting  the 
data to the  parameters. 

In  order  to  test  the  segmentation  procedures  described 
above,  synthetically  generated  range  images were  used. 
For the  tests  reported  here,  gaussian noise with  standard 
deviation of 2.0 was  added to the  depth values distributed 
from 0 to 255. The image sizes are  128 by  328 except for 
figure 7 which is 100 by 100. The surface  plots of the 
range  images  are  shown in figure 8. Good  segmentation 
results  are  obtained as shown in figures 4: 5, 6, and 7. 
To reduce the  computation,  the  program  automatically 
adjusted  to  the size of the region in calculation, so the 
data used are more  sparse  than  the  actual  image. 

In figure 4 : A - A range  image whose  surface plot is 
shown in figure 8-a.  This  image  consists  only  planes; B - 
The value of x-directional  normals  calculated by equation 
(2). The values of the  normals  are rescaled from Q(b1ack) 
to 255(white) for display. Bold black  lines correspond 
to  the  jump  boundaries where  z-component of the nor- 
mal is less than a  small  threshold  value; C ~ The value 
of y-directional  normals; D - The value of z-directional 
normals.  In  figures C and D, dark  bold lines  also  corre- 
spond  to  the  jump  boundaries  where z-directional normal 
is small; E - An example of planar regions with  the  same 
normals; F - Another regions with  the  same  normals; G - 
Segmented  regions  colored by different  grey  values. Each 
region has  plane  parameters(norma1  and  distance  from 
the  origin of the  coordinate  system); H - Boundaries of 
the segmented  regions. 

In figures 5 and 6-E : A - A range  image whose sur- 
face  plot is shown  in  figure 8-b. This  image  consists of two 
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cylinders  with  different  radius; B, C,  and D - x, y, and 
z-components of surface  normals  respectively.  In  these 
figures  black  bold lines also represent  jump  boundaries; 
E - Calculated  end  points of axes(represented by small 
crosses) and location of the axes(1ines  between the  two 
crosses) of two cylinders; F - Extracted two  cylindrical 
regions  whose  axes are shown in E; G - Center  and  ra- 
dius of the big  cylinder  with refined  projected data; H - 
Segmented  region  boundaries;  6-E - Another  example of 
cylindrical  axis  detected and  superimposed on the  range 
image. 

In  figure 6 : A - A range image  whose  surface  plot is 
shown in figure 8-c; B, C ,  and D -x, y, and z-component of 
surface  normals  respectively;  F  -extracted  planar  regions; 
G -A spherical region with  its  center  and  radius  shown  as 
a  cross; H - Boundaries of the  segmented  regions. 

In figure 7 : A - A range  image  whose  surface  plot 
is shown  in  figure  8-d.  This  model  consists of planar re- 
gions and  a  cylindrical region with  a  smoothly  connected 
spherical  region;  B, C, and D - x, y, and  z-components 
of the  surface  normals  respectively; E - Calculated axis 

of the cylindrical  region; F - Extracted  cylindrical  region. 
This region is extracted  from  the  combination of spherical 
region  shown in figure G;  G - A spherical  region  with  its 
radius  and  center  shown  as a cross; H - Boundaries of the 
segmented  regions. 

6 Summary 

We have  shown  surface  parameter  and region extrac- 
tion  methods  based on a  surface  normal  analysis. For cal- 
culation of surface  normals,  a  simple  normal  operator was 
devised [equation (Z) ] .  We utilized  regions  segmented by 
jump  boundaries  and  plane regions  which are  robust sur- 
face types  compared to  other  curved regions. The regions 
are  then  analyzed  one  at  a  time,  subdividing  them fur- 
ther  as necessary. By using the full regions, we retain  the 
maximum possible curved regions without  taking  patches; 
this  increases  the  reliability of the  method.  This  method 
can  be  utilized  as the low  level process of 3-dimensional 
industrial vision system. 

Figure 4: Figure 5: 

Figure 6: 
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Figure 7: 



Figure 8 :  
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