264

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-3, NO. 4, OCTOBER 1984

A Class of Cellular Architectures to Support
Physical Design Automation

ROB A. RUTENBAR, STUDENT MEMBER, IEEE, TREVOR N. MUDGE,
MEMBER, IEEE, AND DANIEL E. ATKINS, MEMBER, IEEE

Abstract—Special-purpose hardware has been proposed as a solution
to several increasingly complex problems in design automation. This
paper examines a class of cellular architectures called raster pipeline
subarrays—RPS architectures—applicable to problems in physical DA
that are (1) representable on a cellular grid, and (2) characterized by
local functional dependencies among grid cells. Machines with this
architecturé first evolved in conventional cellular applications that ex-
hibit similarities to grid-based DA problems. To analyze the properties
of the RPS organization in context, machines designed for cellular
applications are reviewed, and it is shown that many DA machines
proposed/constructed for grid-based problems fit naturally into a tax-
onomy of cellular machines.

The rimplementation of DA algorithms on RPS ‘hardware is parti-
tioned. into focal issues that involve the processing of individual cell
neighborhoods, and global issues that involve strategies for handling
complete grids in a pipeline environment. Design rule checking and

Manuscript received February 20, 1983; revised February 28, 1984.
This work was supported in part by the National-Science Foundation
under Grant MCS-8009315 and under Grant MCS-8007298.

The authors are with the Deépartment of Electrical Engineering and
Computer Science, and the Computing Research Laboratory, Univer-
sity of Michigan, Ann Arbor; MI 48109.

routing algorithms are examined in an RPS environment with respect
to these issues. Experimental measurements for such algorithms run-
ning on an existing RPS machine exhibit significant speedups.

From these studies are derived the necessary performance charac-
teristics of RPS hardware optimized specifically for grid-based DA,
Finally, the practical merits of such an architecture are evaluated.

I. INTRODUCTION

HE successful implementation of increasingly complex

integrated systems has been made possible only because
of the existence of increasingly sophisticated DA tocls. Tra-
ditional DA research—for example, mathematical analysis of
DA algorithms and data-structures, application of software
structuring techniques to chip layout, and use of databases to
manage the design process—has produced software tools run-
ning on conventional serial computers. These tools are limited
in three fundamental ways: by the inherent complexity of the
problem, by the efficiency of the coded implementation, and
by the resources of the machine on which the code runs. To
overcome these three limitations recent attention has focused

0278-0070/84/1000-0264501 .00 © 1984 IEEE

RUTENBAR et al.: A CLASS OF CELLULAR ARCHITECTURES

on special-purpose hardware for DA problems [1]-[20]. The
strategy is to structure the machine architecture to exploit the
problem’s inherent parallelism, replace software with hard-
ware, and include precisely those resources critical to the prob-
lem’s solution.

This paper examines a class of architectures suitable for
physical design problems that are well represented on a fixed
cellular grid, and characterized by local functional dependen-
cies among cell neighborhoods. Problems such as design
rule checking (DRC), device extraction, placement, and rout-
ing have been solved in this framework. An immediate can-
didate for such problems is a cellular array, and indeed,
advances in technology have heralded a renaissance for ar-
rays in many applications, including DA. However, traditional
two-dimensional arrays are not the only machine organization
capable of efficient solution of grid-based DA problems.
Architectures for solving grid-based problems have been
studied extensively in fields such as image processing, pattern
recognition, and mesh-based numerical analysis. Useful par-
allels may be drawn between architectures for cellular pro-
cessing and for grid-based physical DA: each is characterized
by how storage and processing power are allocated to cells
in the problem.

This paper describes cellular architectures called raster pipe-
line subarrays (RPS). An RPS machine is a pipeline of sub-
array stages that processes a large grid in a serial cell-stream.
We analyze grid-based DRC and maze-routing on an RPS
architecture. As part of our examination we report the results
of DA experiments performed with a cytocomputer, a research
prototype in a family of existing RPS machines designed for
geometric image processing [21]-[23]. This disussion sets in
context the feasibility studies in [15] and expands on the
benchmarks in [18]. Results presented here indicate that with
respect to hardware expandability, admissible problem-size,
speed, and range of application, the RPS organization is a cost-
effective approach applicable to an important class of DA
tasks.

The paper is organized as follows. Section II enlarges the
analogy with conventional cellular applications to show how
a taxonomy of cellular processors effectively categories the
diverse hardware proposed/constructed to solve grid-based
DA problems. The'central features of RPS architectures and
cytocomputers are characterized. Next, Sections Il and IV
analyze grid-based DRC and maze-routing in an RPS environ-
ment. Concrete implementations and performance statistics
are given for DRC and routing systems functioning on the
hardware. A principle goal of the experimental work is to
identify performance bottlenecks, separating those generic
to RPS systems from these endemic to the current hardware.
Section V outlines an optimized DA machine with an RPS
organization based on experience with those experimental
systems. Included is an evaluation of the practical strengths
of the RPS organization for these DA problems. Section VI
presents concluding remarks.

II. CELLULAR ARCHITECTURES

Research in special-purpose hardware for cellular applica-
tions spans more than two decades and has accelerated with

265

recent advances in technology. We focus on machines that
support image-processing and pattern-recognition [24]-129].
The analogy between these problems and grid-based DA is
conceptuaily useful, but must not be taken too far. Some
issues critical to these applications and potentially influential
to architectures supporting them are wholly absent from DA.
From the narrow perspective of grid-based DA we construct
a taxonomy of these processors emphasizing:

(1) how storage is allocated to the cells of a grid being
processed,

(2) how processing power is applied to individual cells or
groups of cells,

(3) how processing elements and storage elements are inter-
connected.

It will be shown that many grid-based DA architectures fit
naturally into this scheme. In particular, the place of RPS
architectures is described in this scheme.

2. 1. DA Architectures as Cellular Architectures

A central problem for a cellular architecture that manip-
ulates large grids is how to distribute all grid cells over a
numerically smaller set of processors. In image processor
architecture this problem has been referred to as windowing
[27]. Because the grids representing real images span the
range 102-10° cells on a side, it is generally impossible to
allocate a unique physical processor to each cell; rather the
grid must be manipulated in subsections or windows, For
our purposes, the shapes of these discrete sections, their path
to and from processing elements, and the amount of paral-
lelism in data-movement and data-manipulation define the
architecture.

Fig. 1 shows a taxonomy emphasizing these features. It has
three salient points. First, because the objective here is to
classify DA architectures, this scheme is just large enough to
contain most of the interesting grid-based DA architectures
of which we are aware; cellular architectures that have no
close analogue in current DA machines (e.g., pyramid ma-
chines) are simply omitted. Second, it is explicitly a hier-
archical classification in contrast to other schemes [24], [27].
Specifying a machine by its parents in the hierarchy gives its
concise relationship to other machines emphasizing critical
similarities and differences. Third, it places RPS machines
in this scheme to show their natural relationship with other
array organizations.

At the first level the hierarchy divides into two basic ma-
chine organizations. As noted in [24] there are machines
whose architectures are dominated by a central bus structure
or, more generally, by an Interconnection-Network (ICN)
structure. The other basic organization is, as expected, the
array structure. By array structure we mean specifically the
existence of one or more spatially distributed arrays of inter-
connected processor/storage elements and the machinery to
move data through these elements. Each of these two basic
organizations is subdivided into two classes.

ICN structured machines are classified as using either a
single bus or a routing-network. For example, PICAP I [30]
employs a single high-speed bus to connect image memories,

266

SINGLE
{RASTER)

: RASTER
PIPELINE

Fig. 1. Taxonomy of celtular processors.

a neighborhood processor, and a filter processor. The pro-
posed PASM . architecture {31} employs multipath routing-
networks to connect a set of processor/memory subsystems.

The class of array-structured machines is also divided into
two subelasses. Adopting the terminology of [27], array
structured machines are classified as being subarrays or full-
arrays. The distinction here requires clarification, as it de-
pends not only on structural differences, but also on the
size of the array involved. The full-array would be labeled
a traditional cellular array: a matrix of processor/memory
pairs each connected locally to its neighbors. Modern ma-
chines in this class are typically large square arrays of simple
bit-processors with storage at each node. Examples include
CLIP4 [32], a 96 X 96 array with 32 bits/node; the Distrib-
uted Array Processor (DAP) [33], a 64 X 64 array with 4K
bits/node; the Massively Parallel Processor (MPP) [34],128 X
128 with 1K bit/node; and the Adaptive Array Processor
(AAP) [35], based on a single chip 8 X 8 array with 96
bits/node. Some machines with large memories at each node,
e.g., MPP and DAP, incorporate a notion of grid-folding; grids
larger than the physical array are folded into several planes
and mapped onto the storage available at each node. Some
also provide for limited global communication, eg., DAP in-
cludes an additional bus for each row and column, enabling
complete row-vectors and column-vectors to be moved around
the array. 7 ,

The subarray class is further subdivided, and is characterized
by the range of subarray sizes and the connections between
distinct subarrays. A subarray is an array much smaller than
the entire grid to be processed; it is a processing window. The
smallest subarray is a single neighborhood, 3 X 3 on a square
grid, while the largest is generally between 16 X 16 and 32 X
32. The simplest subarray organization is the class of raster
single-subarrays (see Fig. 2(a)). The idea is to process the
entire cell grid in a serial stream (raster order) as it passes by
a subarray processor. To do this, shift-registers are introduced
as buffers for a few rows of the grid. As the stream passes
through the buffers and the processor, enough of the grid is
present to insure that each subarray of cells eventually arrives
at the subarray processor to be processed. The GLOPR ma-
chine [36] is an early example of this.

IEEE TRANSACTIONS ON COMPUTER:AIDED DESIGN, VOL. CAD:3, NO. 8; OCTOBER 1984

®

Fig. 2. Raster pipeline subarray organization.

(a) Single ‘subarray
stage. (b) Pipeline of stages. : :

The subarray class is not restricted to a single subarray pro-
cessing element; the second subclass contains the multiple-
subarray machines. It too is subdivided. Because the single
subarrays just discussed can output a data stream with format
identical to the input stream, it is possible to connect several
in a pipeline. Here the individual processors are called stages,
and the entire machine is a raster pipeline subarray {see
Fig. 2). This is the organization of the cytocomputer family
[21], [22]. The RPS organization and cytocomputers ate
the subject of Section 2.2.

Multiple subarrays are not restricted to a raster input format.
Nonraster organizations use several interconnected subarray
memories and subarray processors to concurrently process
several pieces of a complete grid. The major difference be-
tween these machines and the apparently similar ICN based
machines is a matter of emphasis. Of primary interest in mul-
tiple subarrays is the physical design of the subarray buffers
and processors, with their interconnections of secondary
interest. In ICN structures much of the architecture is subor-
dinated to the interconnection scheme. An example is the
Preston-Herron Processor (PHP) [37], in which three cell
memories communicate with 16 table-driven processors.

The purpose of this concise overview of cellular architec-
tures is to classify the diverse set of proposed and contructed
DA machines. It will be shown that many grid-based DA
machines are related through the previous taxonomy. The
existence of some superficial architectural similarities between
these two classes of machines is not surprising given the simi-
larities between geometric tasks like pattern recognition, and
grid-based DA tasks like DRC. However, it is significant that
for most of these DA machines there is a precise analogue in
the cellular-computing world. This implies that future DA

RUTENBAR ef al.: A CLASS OF CELLULAR ARCHITECTURES

hardware may profit from related work done on cellular
architectures, reapplying "it to new problems rather than
rediscovering it. The primary motivation here is to develop
the relationship between RPS architectures and other DA
architectures.

Full-array structures have been particularly. popular for DA.
Breuer and Shamsa [5] have proposed a single chip 256 X 256
array of finite-state machines to perform unit-cost Lee routing
and a multichip 1024 X 1024 machine. losupovicz. [13] dis-
cusses the details of such a routing machine based on an inter-
connection of smaller, more modular building block chips.
Adshead [1], [2] has reported successful application of the
DAP machine to problems in maze-routing and logic simula-
tion. Blank [3], [4] has proposed two array architectures
for solving general bit map DA problems: a Bit Map Processor
(BMP) and a Virtual Bit Map Processor (VBMP). A BMPis a
standard array of 1024 X 1024 simple processors each with
memory. A VBMP is a much smaller array, e.g., 32 X 32, with
special hardware to fold a larger virtual grid onfo the physical
array. lLarge memories reside at each array node, and the
edge and corner nodes include special mechanisms for dealing
with border effects. FEach cell in the array can also be indi-
vidually addressed via row and column lines to provide some
global communication. Simulations for DRC and simple
maze-routing have been constructed, and a 4 X 4 TTL proto-
type is being fabricated. Hong er o/ [10], [11] describe a
Wire Routing Machine based on an array of commercial micro-
processors,. which also incorporates provisions for folding
large problems onto the array. An 8 X 8 prototype with 15K
bytes/node is operational, and claims are made that a 372 X
32 structure would likely suffice for all real problems. Sophis-
ticated global-routing algorithms have been implemented and
run on modest test grids [16].

Placement algorithms have also been considered in a full-
array environment. The basic idea is to peform many concur-
rent pairwise interchanges among adjacent modules until total
wire length is minimized. The restriction to adjacent inter-
changes enables each node to compute the change in wire
length from one interchange; the array structure enables con-
current interchanges. Ueda ef l. [20] and Chyan and Breuer
[7] describe similar array machines for placement. (Qutside
the area of grid-based DA, Kane and Sahni [12] describe a
systolic array organization for DRC using polygon edges as the
basic data element.)

Bus structured machines have also been constructed. Damm
et al. [8} have built a Lee-routing engine by modifying a com-
mercial minicomputer. A special cell-memory, a hardware
“kernel” of routing operations, and an interconnecting bus
were added to optimize performance. Successful operation
with PC boards has been reported. (Outside the area of grid-
based DA, the Yorktown Simulation Engineer (YSE) [17], a
compiled logic-simulator, is an ICN structured machine. Up
to 256 logic processors, each storing and updating logic
elements, communicate over a cross-bar switch.)

Subarray architectures also appear. Seiler [19] has devel-
oped a hardware implementation of Baker’s raster DRC [38]
using a raster single-subarray. The processing section uses a
few custom PLA-based chips to perform width checks, edge

267

checks, and logical combination of mask layers in a small win-
dow. A feedback mechanism with shrink/expand templates
is provided in the subarray to enable larger width checking
using multiple passes through the processor. An RPS cyto-
computer [14], [15], [18] has been used to perform DRC
and routing; these algorithms are the subject of Sections
HIand IV.

2.2. RPS Architecture

The first RPS machines, the cytocomputers, evolved in re-
sponse to technology constraints, primarily the inability to
construct a large full-array economically [22], From the pre-
vious taxonomy, the development of these machines appears
as a natural evolution from earlier single-subarray forms.’'
We propose the RPS class as the appropriate abstraction of
the novel features introduced by the cytocomputers in image-
processing work. This section characterizes the inherent par-
allelism and functional limitations of the class, and describes
the cytocomputers.

2.2.1. Local and Global Issues in RPS Architecture

Fig. 2 illustrates the central feature of the RPS organization:
the processing of a cellular grid as a stream of cells moving
through a pipeline of subarray processors. RPS hardware/
software design partitions into two issues: Jocal issues that
concern the processing of individual cells in each stage, and
global issues that concern the movement of entire grids through
the pipeline of subarray stages.

Local issues pertain to subarray stage design. The three
basic components of one stage are (1) the line buffering
scheme, (2) the subarray storage, and (3) the subarray pro-
cessor. The buffering insures that each subarray of data arrives
at the subarray processor as the cells pass through the stage.
Subarray storage size and subarray processor function are
arbitrary. The sequence of operations performed by one sub-
array processor is called one subarray-computation; a typical
sequence consists of examining the cells in the subarray
storage, computing one or more new cell values, and relocating
the new cell values. Relocation is accomplished by retaining
cells internally as temporary variables, injecting them into the
line buffering scheme to replace cells in the input grid, or
injecting them into the output stream to form the input grid
for the next stage.

Global issues pertain to the physical properties of the pipe-
line, as distinct from the functional properties of a stage.
They include pipeline rate, pipeline length, and pipeline con-
trol. Two properties of a stage are defined globally: the stage
cycle time, 7gy,.., which is the time between the output of
consecutive cells from a streaming stage, and the stage latency,
lat>» which is the time required for a single cell to pass com-
pletely through the stage. Note that stage 15 a design param-
eter for the stage, while 7, is a function of the grid size being
processed and the subarray/buffering scheme. Fig. 3 illus-
trates this relationship assuming a 3 X 3 subarray. Fach stage
completes one subarray-computation in fsage time units. The

'Taxonomies have been proposed in which the cytocomputers are
inappropriately categorized as completely disjoint from all other collu-
lar organizations [2471, {27},

268

1,2]?,3 M

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-3, NO. 4, OCTOBER 1984

INPUT~GRID
new
5,5
SUBARRAY
_§{A6'3 Rg 21 %,11%5,9 25,8 ASJ.__."ASIE A s AS"],_ PROCESSOR
"”l“s,s Rs 2| Rs,1 “m[’*«,e “4,7!—-——4"4,5}“4,5 Aml
LINE BUFFERS I.%*.____—__
SUBARRAY

Fig. 3. Grid moving through RPS Stage.

movement of the grid through the stage can be visualized as
a 3 X 3 subarray window moving across the grid [22]. After
cell Ag ¢ in the cell stream of Fig. 3 has entered the stage, the
complete 3 X 3 neighborhood of cell 45 5 is stored in the
stage subarray. The subarray processor then performs a single
computation and, in this example, simply computes the new
value 45%" and injects it into the output stream. All this ac-
tivity occurs in one £y, cycle. On the next cycle, 44 ; enters
the stage and the computed value A5%"is output. In this
example the latency is the number of cycles between A4;;
entering and A?;’“’ leaving and is precisely the number of cells
in the cell stream between A5 s and A4 s (shaded in Fig. 3).
For an image N cells wide #jy = (N + 2) fgage. A pipeline can
be viewed as a series of 3 X 3 stage windows following each
other across the image, each processing the previous stage’s
output.

Pipeline length affects the decomposition of algorithms into
individual steps performed in each stage. Consider an algo-
rithm composed of many repetitions of one processing step.
If this step can be realized as K subarray-computations, then a
KS-stage pipe performs S of these steps on each grid pass. If
the pipeline is too short, § <K, then [K/S] passes arerequired
to realize the step, and each stage performs a different func-
tion on each pass. Long pipelines are generally desirable, but
have a longer total latency, which is defined as the time until
the first result appears at the last stage of the pipe. However,

this is typically a minor effect. For example, the time, 7,5,
required to pass a grid with & columns and M rows through
an S-stage pipe of 3 X 3 subarray stages is

Z*pass = S(N+ 2)tstage +MNtstage

1
The complete processing time is the sum of the total latency
and the time to flush all grid cells through the pipe, Total
latency is the sum of all stage latencies. For large grids, la-
tency is roughly the small fraction S/(S + M) of total process-
ing time.

The principle issue in pipeline control is the implementa-
tion-dependent overhead associated with managing pipeline
data movement and stage programming. As in most full-array
machines, the existence of some global controller is assumed,

the task of which is to synchronize pipeline data movement,
stage programming, and the interface to the data source.

= pipe__length X fi,; + grid._size X tgpe.

2.2.2. Cytocomputer Architecture

Cytocomputer stage design is motivated by the model of
computation embodied in a full-array of state-machines. One
pass of a cellular grid through one subarray stage is intended
to emulate one state-transition in the full-array. In one step,
all nodes in the full-array examine their neighbors and all
simultaneously change state; no information ever moves fur-

RUTENBAR ef al.: A CLASS OF CELLULAR ARCHITECTURES

269

HOST
COMPUTER
(vAx 11/780) | ggm CELL INSTRUCTIONS
170
y STAGE INSTRUCTIONS
PIPELINE ‘ ‘ *
ceLL N CONTROL
BUFFER v i 2 S
CELL STREAM sl

CYTOCOMPUTER (RPS HARDWARE)

Fig. 4. Experimental cytocomputer environment.

ther in one step than the immediate neighbors of one code.
Similarly, each cytocomputer stage is designed so that no
information ever moves further in one subarray computation
than the diameter of a single subarray.

Each stage uses the 3 X 3 subarray just discussed (Fig. 2(a))
and processes a stream of 8-bit cells. The following steps
outline the processing that occurs in one stage in one fgy,e
clock period (see [21] for details):

Step 1: A cell enters the stage, is biased (normalized) or has
some of its bits masked.

Step 2: The 9 cells of the stored subarray are transformed
into a 9-bit vector. Each bit is a true/false decision about each
cell, the result of a threshold comparison with an arbitrary
constant. This vector is an address into a table.

Step 3: A new cell value is selected from the following:
the old center value in the subarray, the largest value in the
subarray, or the value in the table addressed by the 9-bit
address from (2).

Step 4. The cell from (3) is unbiased and unmasked, i.e.,
Step 1 is selectively undone. It is possible to alter only a
single bit in this cell as a function of all the bits of the
subarray.

Step 5: The cell from (4) addresses another table to pro-
duce a modified cell value. This table is used typically for
Boolean operations on bits or for further arithmetic biasing.

Step 6: The cell from (5) is injected into the output stream.
It occupies the same location in the output grid as the center
cell of the current subarray.

Consistent with the model of one state-transition, the com-
puted value of Step 6 is never retained internally for further
computation. This property of the cytocomputer stage will
be referred to as statelessness. Statelessness is a design choice,
and is not fundamental to RPS organizations. The bias-values,
masks, constants, and tables in Steps 1-6 are the instructions
for a single stage. Because the stage depends heavily upon
table look-up the perceived format of the bits in each cell is
arbitrary.

Cytocomputers exist in MSI and LSI implementations.
Existing MSI versions have between one and ten stages. LSI
stages have been fabricated with #g,.. ranging from 100 ns
to 2 us. Fig. 4 shows the global configuration used for the
experiments reported in this paper. Table I summarizes the
performance characteristics of this system.

TABLE 1
Host/CyToCOMPUTER CHARACTERISTICS

Component Deseription
RPS Machine | ERIM Cytocomputer I

Pipe Length
Subarray Stage

2 stages {expandable}
3X3 8-bit cells

2ps

256K -byte

DEC Vax 11/780 + Unix

Litage
Cell-buffer
Host

The system is configured as a host with an attached cyto-
computer. The host sends instructions to the global control-
ler, a microprogrammed unit that programs the stages and
manages the pipeline. The controller provides a low-level
instruction set (that is, one not dedicated to a specific appli-
cation) to process grids through the pipeline. In a typical
processing step, the host deposits a grid in the cytocom-
puter cell-buffer, instructs the controller to send it repeatedly
through the pipeline and back into the buffer, then retrieves
some portion of the processed grid from the buffer.

The ideal pipeline processing time for 3 X 3 stages given by
Ipass in (1) is affected by the system configuration. The ac-
tual time to process an M row by N column grid K times
through an S-stage pipe (i.e., KS computation steps) can be
modeled as

Tsys = i + Stsi + Ktpass~

)

Kipass is the time for K pipeline passes. The other terms are
lumped delays: #p; is the time to initialize the pipeline and
St the time to set up all § stages. These terms arise because
of the nonneglibible time to dispatch low-level instructions
from the host to the controller. Although small, these delays
are always larger than fg,e., e.g., 15 ms versus 2 us on our
hardware, vielding an effective cost of several thousand sub-
array-computations for each controller instruction.

A complete implementation of DRC or routing includes the
software running on the host and the instructions in each
stage. [Earlier DA studies were performed in an interactive
image-processing environment [15] that was neither flexible
enough nor fast enough for large, production DA work.
Algorithms reported in this paper run in a new environment
developed for RPS DA studies.

III. DEsieN RULE CHECKING

The design rules are a set of geometrical constraints that the
masks of the wafer fabrication process must satisfy. The two

270

general approaches to the implementation of DRC’s reflect
the data-structure chosen for the IC mask. Geometric-shapes
checkers perform checks on masks represented as sets of inter-
secting polygons or rectangles [39]. Grid-based checkers work
with a mask represented as a grid whose cells are labeled
according to the presence or absence of particular mask layers.
Both nonuniform grids (the chips are dissected into contiguous
rectangles of arbitrary size [40]) and uniform grids (the cells
are squares) have been used. Raster-scan approaches have
been developed [38], [41] that access a uniform grid in raster
order and check local design rules; the idea is to pass a small
window over the grid and identify the local violation-patterns
appearing in the window. This latter approach motivates a
DRC on RPS hardware.

Roughly speaking, a design rule checker performs the fol-
Jowing on mask features:

Connectivity Resolution: Merge discrete shapes on the same
layer into a single larger shape if they overlap; connectivity is
similarly assessed across several layers, e.g., across contact
windows.

Layer Combination: Create new layers from Boolean com-
binations of existing layers, e.g., the intersection of several
layers.

Tolerance Checks: Determine whether a local group of
shapes on one or more layers satisfies some spatial constraint,
e.g., cornerfedge separation, incursion, inclusion, exclusion,
size, area, perimeter.

When a mask is represented as a grid, local connectivity and
layer combination are easily computed. Overlapping shapes
automatically become a single entity as the cells within the
shapes are labeled as belonging to a particular layer, and
Boolean combinations performed globally across several
layers are simply performed on each cell in the mask. Global
connectivity is harder to resolve because it involves propa-
gating nodal connectivity information around the cells of the
grid; such global data movement is inefficient if we are re-
stricted to local processing of cells. Tolerance checks are
more interesting since they require not just cell by cell pro-
cessing but also pattern recognition operations on spatially
distributed group of cells.

Accordingly, this section describes tolerance checks imple-
mented on a cytocomputer. The checks are applicable to
the NMOS design rules of [42]; we employ a uniform grid
of A X\ cells where X is the basic length unit used to express
design rules.

3.1, Formalism for DRC Algorithms

We outline a formalism [43], [44] that introduces useful
operators applicable to binary-images, and hence to masks, and
also introduces an algebraic framework in which to manipulate
them. The approach provides a convenient notational tool for
DRC slgorithms. It treats a binary image as a set of points
(the opaque points on a transparent mask) where a point is an
ordered pair of coordinates in the grid.

If 4 and B are masks, and hence sets, the usual mask-to-mask
Boolean operators appear in set-theoretic form as intersec-
tions, unions, etc. Next, define the translation ol aset 4 by a
point p tobe A, = la+pla€ A}, if A isregarded as a geomet-

£

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-3, NO. 4, OCTOBER 1984

ric shape, A, is A with its local origin moved to p. With transla-
tion define the two primitives of dilation @, and erosion © as
follows:

A®B= U 4, A0B={p|B, C A4}
b&zB

The dilation A @ B is the union of translations of 4 by points
from B. The erosion 4 © B is the set of points to which we
can translate B and still have it contained in 4. Loosely, dila-
tion and erosion are formal generalizations of the intuitive
ideas of expanding and shrinking. However, erosions and di-
lations are defined for arbitrarily complex sets 4 and B,
whereas expands and shrinks are usually specified with simple
patterns. This formalism is useful because these operators are
local, and can be reduced to a sequence of subarray-
computations.

In an expression such as 4 © B, 4 is typically a complete
mask, and B is a small figure such as a circle or rectangle. If
B fits inside one subarray, then 4 © B is implemented in one
subarray-computation as grid A4 streams through one RPS
stage. Operations with a larger more complex B will be de-
composed into a sequence of smaller operations each suitable
for execution in one stage. The algebra includes identities
which permit simplifications similar to those done in Boolean
algebra. For example, to compute 4 © B when B is a dilation
of subarray-size figures B=8; @ B, @ B,, it suffices to com-
pute (4 © B,) © B,) © B;) which can be done directly in
three stages.

Two operators defined as compositions of the dilation and
erosion primitives are also useful. These are called opening
and closing. If X and S are sets, X opened by § is X = xo
S$)® S, and X closed by S is X*=(X ® §)© S. Again inter-
pret sets X and S as geometric figures. Then X opened by S
is the set of points in X touched by S as S slides around inside
X. Closing has a similar interpretation for the complement of
X. Fig. 5 demonstrates all these operations.

3.2. DRC Algorithims

We illustrate a cellular DRC by constructing an algorithm for
a width-3) tolerance check on an orthogonal mask. This
check identifies regions of a mask less than 3\ wide. A single
mask is a binary image occupying one bit in each 8-bit cell of
the input grid. The algorithm produces another binary image,
stored one bit per cell, indicating the locations of width viola-
tions. In a complete DRC all masks are stored in these paral-
lel bit-planes. The 8-bit cytocomputer datapath allows up to
eight masks to be processed simultaneously.

The algorithm is based on the simple observation illustrated
in Fig. 6, which shows a mask on which we wish to perform a
width-W check. Slide a disk of diameter W around inside the
mask to all possible locations at which it may be completely
contained (Fig. 6(b)). While it slides, note those points
covered by the disk and trace the path of its center. It is clear
the disk should not pass through regions which are too narrow,
i.e., regions which fail the width test. Except for some square-
corner effects, those regions left uncovered all violate the
width test (Fig. 6(c)). Note also that the region traced out by

RUTENBAR et al.: A CLASS OF CELLULAR ARCHITECTURES

| I |

CLOSING XS

OPENING Xs

Fig. 5. Formal mask-image operators. Origin in shapes X and §

marked “+,

the center of the disk is not connected across the diagonal
neck of the mask.

With these observations one can construct an executable
width-3\ algorithm. First define the following geometric
shapes. Let M be the mask-image to be checked. Because a
real mask has square corners, replace the diameter-3 disk with
S(3), a 3 X 3 square. The set of points covered by S(3) as it
slides in M is precisely the opening My 3,. The region traced
out by the center of S(3) is the erosion M © §(3); call this C.
Define Q(3) to be a cellular approximation of a radius-3
quarter-circle, the first quadrant of a radius-3 circle centered
at the origin. Breaks in C are characterized by diagonally
adjacent corners of components of C separated by no more
than 3x. Mark one set of corners, Ty, the northeast corners,
and then search nearby each for an unconnected southwest
corner; each region searched takes the shape of ((3). The
algorithm can be outlined as follows:

Width-3X Test:

Step 1: Open M with §(3). Areas of M not in the open-
ing are errors.

Step 2: Erode M by S(3) to get C. This is the path
traced by the center of S(3).
Step 3. Tag the northeast corner of each component of

C; call these points Typ. This prepares to
identify the regions of M which restrict the
passage of §(3) by finding the breaks in C.

Step 4. Dilate Txg by Q(3) over M. This dilation
intersects the southwest corner of another
region of C if and only if a break has occurred
along a northeast/southwest axis. Mark the

(a) (b) (©)
Fig. 6. Geometric basis for width check. (a) Mask feature. (b) Width-
W disk slides through feature. (c) Regions covered by disk (dotted)
and traced by center (striped).

points in this intersection as errors; they indi-
cate a diagonal width violation.

Steps 5, 6: Similar to Steps 3, 4 to find errors along the
northwest/southeast axis.

This algorithm tags any region smaller than 3X X 3, and
tags the north side of each pinched-neck diagonal width viola-
tion. It is generic because replacing S(3), Q(3) by S(W),
Q(W) gives a width-WX\ check. Note in the case W=3X a
radius-3X quarter-circle is approximated as a 3 X 3 square.

This algorithm illustrates the utility of the formalism pre-
sented in the previous section. Algorithms are designed as
sequences of operators working on geometric objects; altering
the size of these objects does not alter the basic algorithm.
These operators are formally decomposed into a set of con-
crete subarray-computations for the hardware. This generally
frees algorithm design from the tedious detail of pattern spec-
ification inherent in pattern matching approaches.

3.3. DRC Experimental Results

The width-3X check requires 8 subarray-computations to
run. Fig. 7 shows the results of running the algorithm on a
64 X 64 test pattern. All errors are correctly detected. On a
3-stage cytocomputer this test required about 0.5 s to run.
As a more realistic test, we stacked this figure 64 times to
yield a 4096 X 64 grid, representing a slice of a real chip.
This check required 5.1 s to run: 2.3 s of pipeline processing
and 2.8 s to transfer the grid between host memory and cell-
buffer. Depending on the sophistication of the checking
needed and extra processing required to put meaningful
labels on errors, a DRC for this class of rules on five NMOS
mask layers will take between 150 and 250 subarray-com-
putations. Table I estimates the time to run such a DRC
on a 4096 X 4096X chip for different pipeline lengths. We
assume processing is done in contiguous vertical strips, each
64 cells wide and overlapped by 4 cells to avoid errors, and
sum all strip times. We use the transfer time for the single
strip test, and assume that the host generates these strips as
fast as the pipeline requires, i.e., with negligible delay be-
tween strips.

272

Fig. 7. Result of width-3A test. FErrors. superimposed in black over
mask features.

TABLE 11
EsTiMATED DRC TiME, 4096A X 4096) IC

Estimated DRC Time in Seconds

Pipeline
Length || 150-Step-DRC | 250-Step-DRC
1 5821. 9239.
16 73712 1099,
50 305.8 3809
100 268.9 3040
250 230.7 2317

3.4. Enlarging the Scope of Application

It is clear from Table 1I that with a modest pipeline (10-
100 'stages) a chip represented-as a grid with a several million
cells can be checked against rules equal in complexity to [42]
in 5-20 min. However, two potential difficulties arise if
this methodology is extended to very large chips: the size of
a large layout, and the guality of a DRC for such a layout.

Consider a large chip drawn on a cellular grid. If 7 is the
minimum feature size of the given layout, some commercial
microprocessors drawn on a grid of fX f squares require 10
to 15 million cells {45]; for reference, a 300 mil X 300 mil
chip drawn on'a I-um grid has about 60 million cells. Given
that a complete DRC for an entire chip or just one strip will
require several passes through a practical pipeline (10-100
stages) the question is how to generate, store or regenerate
the required grid. We suggest two solutions:

1) Dedicate a large disk and a large cell-buffer to the pipe-
line. We can then generate the complete chip grid, store it
on the disk, and process either the whole chip or contiguous
strips. The key constraints are the mask-generation rate of the
host, the I/O speed of the disk, and the size of the cell-buffer.
As an example, consider a system with the parameters of Table
II. A DRC using contiguous strips then requires roughly
1500 s for the data-transfer and #p,g pipe-processing to make
the grid initially, and 69 overlapped strips at 6 s per disk
buffer-pipeline-buffer-disk DRC cycle. About 66 percent of
this is the time needed for the host to make the mask-image.
Expected overhead will likely increase this by at least 50
percent.

2) Dedicate special hardware to the task of mask-image

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN; VOL. CAD-3; NO. 4, OCTOBER 1984

TABLE 111
ExamprLe DRC SySTEM PARAMETERS

System Parameter
‘Mask-Tinage Sire

Host P i g

Disk Transfer Rate

Description
84M-bytes (8096 X 8006)
84K cells/
1M-byte/sec (average}

Pipeline Length B4 stages

Lotage Lpe
Cell-Buffer Size IM:byte
Complete DRC Length 256 steps

generation. The preceding analysis assumes that the mask-
image is fully instantiated on the disk with no encoding. If
some pre- and post-processing is available at each end of the
pipe, a simple run-length coding of each line will reduce
storage requirements and hence data transfer time. = The
single-chip polygon-to-raster converter discussed in [19]
would enable a polygon-based mask to be rapidly streamed
through an RPS machine. More complex schemes [46], [47]
may also be possible.

We conclude that some combination of dedicated storage
and special hardware is sufficient to manage the size problem
for large chips.

The second and perhaps more serious problem is the issue
of quality: a cellular DRC imposes restrictions on the layout
of a chip and on the geometry-rules to be checked. Layouts
represented with a polygon data-structure may contain fea-
tures of arbitrary shape and arbitrary size; polygon checkers
can usually resolve electrical connectivity and use this infor-
mation -in tolerance checks. . Cellular checkers restrict the
layout to a uniform grid, restricting all features to orthogonal
boundaries (no oblique lines) and all distances to multiples
of the unit cell size. Electrical connectivity is not usually
available - during tolerance checking, resulting in nuisance
errors. These issues are addressed below.,

1) Many layouts do not require features of arbitrary size.
The popularity of simplified design rules in several technolo-
gies [48], [49] suggests that grid-based may be equally
acceptable.

2) Some oblique lines are representable on cellular grids
at the expense of increased storage or processing; see [19],
[40]. Most layouts are primarily orthogonal. It has been
argued that obliques are a questionable luxury that may be-
come too expensive to check in the face of VLSI complexity
[50].

3) Lack of electrical connectivity information is not unique
to cellular checkers. Other recent university systems [51],
[52] have not implemented obliques and/or connectivity in
order to focus on other research directions. Connectivity ex-
traction is not impossible here but the overhead to store a
node label in each cell is expensive. Only rules based explicitly
on electrical information, e.g., fanout rules, are compromised
here. Complex geometrical rules can always be checked on a
cellular grid; the only drawback is the possibility. for false
errors from connectivity pathologies.

Given the existence of large designs representable on cell-
ular grids, the strong demand for a comprehensive chip DRC,
the long execution time for a typical software DRC (often
measured in days on-a mainframe [53]), we conclude a rea-
sonable quality DRC for such designs executing on RPS hard-
ware in 10 min to 1 h is a potentially useful DA tool.

RUTENBAR ¢t 3l :"A CLASS OF CELLULAR ARCHITECTURES. .

IV. ROUTING

Maze-routing is a natural application for a celtular architec-
ture. The continuing viability of Leetype routers in both
PC board and LSI applications is indicated by recent surveys
[54], [55]. Much research has focused on modifications of
the basic Lee algorithm [S6] to improve efficiency [57]-
[59]. This section describes experimental one-layer and two-
layer routers running on a cytocomputer. These are complete
implementations; the host accepts a net-list and produces a
grid with embedded wires. The cytocomputer is the inner-
loop: its only job is to find a path between pomts The host
handles unroutable nets, etc.

4:1. Routing Algorithns.

The ‘routing ‘of 'a smgle source-to- target path has three
phases:

Wavefront-Expansion: Iterativeiy éxpand from the source a
wavefront of labeled cells; cells on one labeled frontier begin
a path to the source and are equidistant from the source. Con-
tinue until the target cell is reached. This can be realized in
parallel across all cells. Each cell depends only on nnmedlate
neighbors. '

Buack-Trace: Trace a path from the target back to the
source along labeled cells. This is wholly sequential, best done
on the host. : e

Cleain-Up:: Rémove éxtraneous labeled cells and relabeled
the new path as a future obstacle. This is also parallel.

Elementary wavefront-expansion in an RPS pipe is shown
in Fig. 8. Assuming the labeling of one cell is one subarray-
computation, the key idea is that' ‘each stage adds one layer
of cells to the wavefront as the grid passes by. Thus the L
expansions needed to find any path of length L require [L/S}
passes with an S-stage pipe.? This addition of one layer of
cells to a wavefront is one wave-expand step. The cytocom-
puter’s 8-bit datapath precludes labeling with weights or pen-
alties. ' We treat the implementation of unit-cost routers.

The one-layer router is based on the cell encoding of [5]
where an expanding wavefront is labeled with source-pointing
arrows. The activity of each grid cell is encoded in the alpha-
bet {source, target, free, blocked, <, 1, 4,~, T+, T1, T4, T-}.

The wave-expansion phase places an arrow in each free cell
if it is bordered by an active wavefront; the new arrow points
to the active cell. Any label in {¢, 1, }, >, source} can be on
a wavefront. When more than one labeling may be chosen,
we choose directions in the order T, <, -, . This is imple-
mented in one cytocomputer stage, i.e., an S-stage pipe adds
S layers to a wavefront. Ideally, this step is repeated just until
the target cell is labeled with an arrow. However, farget may
actually be reached in the middle of the pipeline and we can-
niot simply stop the raster stream. Hence, targer will likely be
overrun and a few extraneous cells will be labeled. The issue
is how to determine when #argetis reached. On the current
hardware the best solution is to add this operation to the pipe-

2This results from .z stateless stage: . If labeled-cells can also replace
old ‘cells in the stage buffering then one pass throngh one stage could
find entire north-to-south and west-to-east net segments [60]. Also,
in practice unused stages (L mods# 0) are disabled and pass. the grid
with negligible delay.

273

VAVEERONT. 1

. WBVEFRONT 2

WAVEERONT. 3 YAVEFRONT 4

3

4-STAGE RPS PIPELINE

Fig. 8. Elementary RPS wave-expansion. One stage adds one layer to
wavefront.

line controller’s microcode, allowing it to check the buffer
after each pass and signal the host. We usea slower approach
and return the target cell to the host after L expansions, where
L is the expected path length. The back-trace phase traces the
source-pointing arrows from the target back to the source,
attaching a T to each cell on the unique path traced. The path
is thus encoded {T«, T1, T}, T>}. The host performs this
trace by returning some of the grid; this operation also should
be added to the controller’s micracode. . The clean-up phase
labels the new path as an obstacle and removes all other cells
labeled during expansion; it requires one cytocomputer stage.

The two-layer router is similar, but uses a larger alphabet. It
assumes preferred horizontal and vertical layers connected by
vias. To reduce vias, small jogs are allowed in the nonpreferred
direction.. To reduce complexity. a strict rule is imposed: one
wire segment can jog just once, and must change layers to jog
again; vertical segments can jog 1 unit, horizontal segments 2
units. This permits a small 3-stage wave-expand step. Back-
trace is done as before; - Clean-up now also performs via-ex:
clusion, labeling cells as blocked to avoid illegal via adja-
cencies; it requires 2 stages.

One additional global consideration must be addressed. It is
clearly inefficient to process the entire grid for each wire be-
cause most cells will be inactive. Instead, we expand incre-
mentally in a2 sequence of increasing frames bounding the ac-
tive wavefront. We expand until we reach the boundaries of
a frame, increase the frame-size, and repeat. . This avoids pro-
cessing inactive cells; [18], [60} discuss optimal framing se-
quences. A complete 2-point router has this outline:

ROUTE:
estimate spatial extent of net;
compose framing sequence;
while(more frames) {
expand in frame;
if (target reached) {
return frame to host;
back-trace;
return frame to hardware;
clean-up;
© STOP.
}

else next frame;

}

Multipoint nets are handled by relabeling each net-segment
as a source and expanding again.

274

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD:3, NO. 4, OCTOBER 1984

3 SINGLE NET ROUTE TIME VS NET LENGTH
10 5373 PIPE LENGTH 1-3 STAGES
| 4-POINT NET
'Ii”‘,. 512 X 512 GRID
3
4
w0] 1-STAGE
2-STAGE
RTGI”;E 3-STAGE
SEC
(SEC) . ELAPSED TIME—
10 4
1-STAGE
2-STAGE
0 3-STAGE
10 -
HOST CPU mi/'
-1
10 . .
1 2 3
10 10 10

NET LENGTH ON 512 X 512 GRID

Fig. 9. 1-layer routing time versus pipe length and net length. 4-point
nets of identical shape are placed in 512 X 512 grid.

FRAME 1+1
" FRAME
a NLARGED
FRAME 1 ¢ o g}af

‘af

af

I, WAVEFRONT
REACHES
BOUNDING FRAHE

39,0, ELAPSED ROUTE TIME VS af

'

NET LENGTH 256

PIPE LENGTH 1 - 3 STAGES

34.7 /
N ,/
route 204 \, Ve
TIME A e
(SE0) 26,1 B A
\Wﬂ/
21.94
n 2-STAGE
17.64 o
N o
. e
Bk\ \EW
13.3 E//m 3-STAGE
[N— -
50 ’\xﬁ_f—aﬁw—e/ .
1 2
10 10 10 10

af FRAME INCREMENT IN 512 X 512 GRID

3

Fig. 10. Optimal framing for 1-layer router. Plot shows time to route
2-point net of length 256 on 512 X 512 grid versus frame increment
Af. Af is roughly how many wave expands are done per frame. Af
too small creates overhead to manage frames; Af too large expands
mostly ingctive cells. Suboptimal framing increases routing times.

4.2. Routing Experimental Results

Single layer routing time versus pipe length and net length
is shown in Fig. 9 for identically shaped 4-point nets. As
expected, time increases with net length, but decreases roughly
linearly with pipe length. The test used the results of Fig. 10

TABLE IV
I-LAvErR ROUTER BENCHMARK. RouTe 200 2-Point NETS, AVG. LENGTH
170, on A 512 X 512 Grip. CPU TiMe For HosT + HARDWARE REFERS
T0 Host TIME; FOR FAIRNESS, ALL MACHINES ARE LIGHTLY LOADED

Machine mips Elapsed Time | CPU Time
(approx) (seconds) Esecondsl
Amdah! 5860 12 847.0 3219
Vax 11/780
+ 3 Cyto stages - 1939.7 2353
Vax 11/780 1 5008.2 3985.0
Vax 11/750 0.8 B587.3 8253.0
Apollo DN 600 0.5 B8994.4 8910.2
TABLE V
LAYER ROUTER BENCHMARK. ROUTE 2-POINT NETS IN 2-LAYERS
o~ PCB
Parameter Value
" 200X 240 cells
PCB Site | (1617 inches)
Nets Tried 412
Nets Completed 372.(91%)
Total Wire Length 23069 cells
Host CPU Time 335.2 sec
Elapsed Time 2039.8 sec

which shows the effects of varying the frame increment for
one net. As a more realistic test, we compared our one-layer
router against the benchmark and software maze-router of
[4] for several machines. The resulting time (Table 1V) is
superior. to all but the large mainframe. Table V gives the
result of routing a PC board with the two-layer router.

4.3. Enlarging the Scope of the Application

With a modest pipeline (10-100 stages) the current machine
can quickly route many PC boards and gate-arrays (up to
1000 X 1000 grid). Assuming times decrease linearly with
stages as in Fig. 9 (i.e., total f;,, time decreases), a 32-stage
machine with the same host overhead, about 1.5 s/net, can
place 1000 4-points nets of length 128 in about 30 min. If
overhead were reduced to 100 ms/net, e.g., by doing back-
trace in the RPS hardware to avoid returning the grid to the
host, then a 32-stage machine with fy,,. = 1 us executes the
same task in roughly 3 min. Extensions to larger grids can be
accommodated with a larger cell-buffer. Extension to more
complex routing schemes is more difficult. Although the
restriction on two-layer jogs can be removed at the cost of
more stages, more complex schemes require a different stage
design.

Alternatives such as channel-routing have in many applica-
tions supplanted maze-routers. Although maze-routers offer
a wide range of routing performance their slow execution rate
restricts them to those final connections unroutable by other
means. However, an RPS maze-router removes this time pen-
alty and makes this an efficient scheme for all connections.

V. RPS ARCHITECTURES FOR DA

Cytocomputers are RPS machines designed as image-pro-
cessors; they are not optimal for these DA problems. This sec-
tion suggests a design for an RPS stage more closely matched
to the DA applications previously described. We also discuss
the merits of RPS systems with respect to practical consider-
ations for selecting DA hardware.

S5.1. An Optimized DA Architecture

There are three essential characteristics of grid-base DA
problems: a wide range of grid sizes-up to 10%-10° cells, a

RUTENBAR et al.: A CLASS OF CELLULAR ARCHITECTURES

FROM PIPELINE

275

CONTROLLER SINGLE PIPELINE STAGE
| @
12
’ 13
‘ 1k TEMPORARY
4 STORAGE
A 4
! INSTRUCTIONS
DATAPATH ACCESS |
! CONTROL M
SUBARRAY
FROM FULL-
‘ PREVIOUS FIELD WIDTH TABLE | FIELD
STAGE o| susarray ALIGN ALU LOOKUP | ALIGN
ACCESS
' L 3
7 Y
\ 4
LINE BUFFERS |4 ABLES

Fig. 11. RPS stage for DA.

wide range of data-bits, fields, integers—required in each cell,
and a wide range of processing—pattern recognition, bit-
manipulation, integer arithmetic—required on each subarray
of cells. The 8-bit table-driven structure of current cytocom-
puters is insufficient for these problems. Moreover, the table-
driven model does not simply scale up to wider data-paths.
Table look-up is impractical for more than 12 or 13 bits, and
hence, subarray-computation based only on direct table look-
up is impossible for wider data. Arithmetic capabilities are
limited in current cytocomputers. This section suggests a
stage structure to handle these problems.

An algorithm is realized on RPS hardware as a sequence of
stage operations. The numiber of pipeline passes to implement
the algorithm dominates its execution time. To minimize
this time, it is desirable to incorporate as much hardware in
each stage as is necessary to perform each algorithm step inone
stage. For example, in a DRC it should be possible to perform
pattern recognition steps on several independent mask-planes
simultaneously in a single stage. Also, a router should perform
one wave-expansion step with arbitrary integer-weights/pen-
alites in one stage.

Fig. 11 shows the structure of such a stage. It resembles a
cytocomputer stage in that there is subarray storage, line-
buffering, and a datapath using table look-up. However, the
following new features are incorporated:

Wide Datapath: 24-32 bits wide in all storage and pro-
cessing sections o support several data formats in each cell.

Subarray Access: with a 32-bit datapath the subarray is
configured as a 3 X 3 X 32 array of bits, accessible as nine
32-bit words and thirty two 9.bit mask-planes. This supports
pattern processing steps on independent mask-planes.

ALU, Field Manipulation, Table Look-Up: The datapath
has a fullwidth ALU with complete arithmetic capabilities.
Table look-up is still provided but only for the low-order bits

of the datapath; 12-13 bit look-up is practical. To line up
data for the table, barrel-shifts in 2-4 bit increments are pro-
vided at both ends of the datapath. Integers, multibit fields,
and bit-planes can coexist in a single cell; arithmetic, logic,
and table substitution can be performed on any of these for-
mats, Temporary storage similar to the subarray is provided
for stage-intermediate results.

Datapath Instructions: Explicit control of the flow through
the datapath of a stage is provided by a controller with its
own instruction-set. Each instruction operates on one minor-
cycle of the stage clock (similar but less flexible minor-cycles
exist in current cytocomputer§). Several instructions are
stored in a stage and executed in order. Each instruction
determines the source, processing and destination of datapath
operands. If storage permits, literal operands could be injected
into the datapath.

Note that this structure resembles that of a microprogrammed
bit-slice machine. The primary departures are the subarray
access mechanisms, the explicit support for tables and fields,
and the need to fit everything on a few chips to allow long
pipes.

This structure minimizes the number of stages required to
implement DA algorithms. Consider a DRC application: sev-
eral independent mask-planes are processed on successive
minor-cycles by accessing different bit-planes in the subarray
and operating on each with transformations stored in the
datapath table. A more general wave-expand step is done in
one stage: four cycles fo determine the bordering cell with
minimum/maximum weight, one cycle to add/subtract this
from the central cell, and one ¢ycle to update any flags. Table
V1 gives the performance goals for such a stage. Several trade-
offs are apparent. Datapath width affects the complexity of
the ALU, subarray and temporary storage, and Instruction
storage. Pipeline rate impacts the number of feasible minor-

276

PIPELINE O

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-3, NO. 4, OCTOBER 1984

)

PIPELINE 1

FORMAT | OUTPUT

!

forward and practical. In addition, the loose coupling of
major system components—disk, cell-buffer, controller, pipe-
line—permits independent component upgrading.
Cost/Performance Range: Both cost and performance are
proportional to pipeline length and cell-buffer size. A low-end
system will have only a single short pipe and small buffer. A

INPUT] [] (}
" PIPELINE 2
X
RASTER
SUBARRAY
STAGE
Fig. 12. RPS pipeline for DA.
TABLE VI
PERFORMANCE GOALS FOR PIPELINE STAGE
Parameter Value
Datapath Width | 24-32 bits
Line-Buffer Length | 4K-16K
Stage Cycle £, < I pe
Minor-cycles (instructions} | 10-12, == 160 ns/eycle
Table Look-Up | 4K-8K words
Field-Alignment | Barrel Shift, 2-4 bit increments
Temporary Storage | 49 full-width words

cycles, and line-buffer and table access times. With a semi-
custom Implementation and 64K-bit memories a single stage
will require about 10 chips. With a custom implementation,
256K-bit memories and relaxed pin constraints a 3-chip stage
is possible: one chip each for the line-buffers, the stage-pro-
cessor, and the tables.

We have not yet addressed the appropriate length for a
pipeline of these stages. Most applications argue for very long
pipes. However, it is usually not the case that all stages are
required at all steps of the algorithm, for example, global de-
cisions may be necessary after short processing sequences, in
which situations a long pipeline is underutilized. The solution
shown in Fig. 12 employs multiple shorter pipelines. Each
pipeline can be connected to the adjacent one to form longer
pipes. More importantly, several short pipes can concurrently
perform different tasks: short DRC steps, independent path
connections, for example. {(Conceivably, several independent
users can have a short dedicated pipe if appropriate multiple
1/O channels are available.) This organization requires only
the addition of switching multiplexors at the front of each
pipe, and a small format-processor to choose which bits of
which streams are placed in the single final output stream.
The complexity of such a system is not excessive; assuming
a 3-chip stage, a I-chip switch, and a 10-chip format-processor
a subsystem with four 32-stage pipelines will require about
400 chips.

5.2, Practical Considerations for DA Architectures

Several criteria are available to evaluate the merits of pro-
posed special-purpose machines [1] including practical trade-
offs among cost, speed, expandability, and range of applica-
tion. RPS machines have these advantages:

Expandability: A machine based on a pipeline of homo-
geneous stages is inherently modular. Adding stages is straight-

high-end system will have several long pipes, a large buffer, and
a dedicated disk.

Direct Accommodation of Large Problems:
limited only by the length of the stage line-buffers.

Application Range: Clearly a variety of DRC and routing
tasks can be performed. Any problem represented on a cellu-
lar grid characterized by strongly local cell dependencies is a
candidate.

The primary weakness of these architectures is the restric-
tion on global and conditional data-manipulation imposed by
the pipeline structure. Pipeline inertia means that a decision
based on the complete state of the grid or the movement of
complex grid sections must often be postponed until the
processed grid is available at the end of the pipe. It is diffi-
cult for a state change in one cell to influence globally all
subsequent pipeline stages. In our experiments, neither of
these problems appears serious enough to warrant abandoning
RPS machines.

It is useful to compare RPS machines with full-arrays on
some of these points. The pipeline structure accommodates
additional processing stages. Arrays are generally not designed
to accommodate additional processors. Arrays with thousands
of processors are usually restricted to simple but fast bit-
sequential processors; algorithms may be lengthy because of
this bit-level processing but overall speed can be significant
due to the enormous number of processors. Pipelines with
10-100 processors can afford more complex stages; the goal
is to incorporate as much processing power in each stage as
necessary to minimize pipeline passes. Arrays with large mem-
ories at each node and pipelines with long line buffers can
deal directly with large problems. However, arrays are limited
by the total storage available across all nodes, whereas pipe-
lines are limited by the length of the line buffers. Consider,
for example, that both a 64 X 64 array with 4K-bits per node
and a 64-stage 32-bit wide pipeline with 4K-cell line buffers
require 16M-bits of storage. A 704 X 704 X 32-bit grid can

Grid-size is

RUTENBAR er al: A CLASS OF CELLULAR ARCHITECTURES

be folded directly onto the array effectively filling up all stor-
age; any larger image must paged in and out of this storage.
A 4K X 4K X 32-bit image can be directly streamed through
the pipeline. Both arrays and pipelines benefit uniformly
from improvements in device density and speed: incorporating
more stages (processors) onto a chip allows the construction
of larger pipelines (arrays). There will inevitably be some
point at which chip count for a large pipeline system matches
that of a large array. In this situation the particular structure
of the problems at hand will determine the choice of hardware.

VI. CONCLUSIONS

The RPS class can effectively support several grid-based DA
applications, the principal strength being the wide cost/per-
formance range achievable with a modular pipeline structure.
Results from experimental DA algorithms running on small
cytocomputers are encouraging; some of these systems are
already superior to their software counterparts. A more opti-
mal RPS design resulting from these experiments will further
improve execution times and permit more complex DRC and
routing applications.

ACKNOWLEDGMENT

The Environmental Research Institute of Michigan provided
early access to prototype cytocomputers, and the authors
thank Robert Lougheed and David McCubbrey in particular
for this support. They are also grateful to Tom Blank for the
benchmark and router of {4], and to Paul Killey for system
support.

REFERENCES

{11 H. G. Adshcad, “Towards VLSI complexity: The DA algorithm
scaling problem: Can special DA hardware help?” in Proc. 19th
Design Automation Conf., pp. 339-344, June 1982.

—— “Employing a distributed array processor in a dedicated
gate-array layout system,” in Proc. ICCC, pp. 411-414, Oct.
1982.

T. Blank, M. Stefik and W. van Cleemput, “A parallel bit map
processor architecture for DA algorithms,” in Proc. 18th De-
sign Automation Conf., pp. 837-845, June/July 1981.

T. Blank, “A bit map architecture and algorithms for design
automation,” Ph.D. dissertation, Dept. of EE, Standord Univ.,
Stanford, CA, Sept. 1982.

M. A. Breuer and K. Shamsa, “A hardware router,” J. Digital
Svstems, vol. IV, issue 4, pp. 393-408. 1981.

C. R. Carroll, A smart memory array processor for two layer
path finding,” in Proc. 2nd Caltech Conf. on Very Large Scale
Integration, Jan. 1981.

D. Chyan and M. A. Breuer, “A placement algorithm for array
processors,” in Proc. 20th Design Automation Conf., pp. 182~
188, June 1983.

F. Damm and H. Gethoeffer, “Hardware support for automatic
routing,” in Proc. 19th Design Automation Conf., pp. 219-223,
June 1982.

M. M. Denneau, “The Yorktown simulation engine,” in Proc.
19th Design Automation Conf., pp. 55-59, June 1982,

S. J. Hong, R. Nair, and E. Shapiro, “A physical design ma-
chine,” in VLSI 81, J. P. Gray, Ed., London: Academic, pp.
346-365,1981.

S. J. Hong and R. Nair, “Wire routing machines—New tools
for VLSI physical design,” Proc. IEEE, vol. 71, pp. 57-65, Jan.
1983.

R. Kane and S. Sahni, “A systolic design rule checker,” TR-83-
13, Computer Science Dept., University of Minnesota, July 1983.
A. Tosupovicz, “Design of an iterative array maze router,” in
Proc. ICCC, pp. 908-911, 1980.

{2]

277

{14] T. N. Mudge, R. M. Lougheed and W. B. Teel, “Cellufar image
processing techniques for checking VLSI circuit layouts,” in
Proc. 1981 Conf. on Information Sciences and Systems, The
Johns Hopkins University, pp. 315-320, Mar. 1981.

T. N. Mudge, R. A. Rutenbar, R. M. Lougheed and D. E. Atkins,
“Cellular image processing techniques for VLSI circuit layout
validation and routing,” Proc. 19th Design Automation Conf.,
pp. 537-543, June 1982.

R. Nair, S. J. Hong, S. Liles and R. Villani, ““Global wiring on
a wire routing machine,” Proc. 19th Design Automation Conf.,
pp. 224-231, June 1982.

G. I°, Pfister, “The Yorktown simulation engine: Introduction,”
in Proc. 19th Design Automation Conf., pp. 51-54, June 1982,
R. A. Rutenbar, T. N. Mudge and D. E. Atkins, “Wire routing
experiments on a raster pipeline subarray machine,” in Dig
Papers, IEEE International Conf. on CAD, pp. 135-136, Sept.
1983.

L. Seiler, “A hardware assisted design rule check architec-
ture,” Proc. 19th Design Automation Conf., pp. 232-238, June
1982.

K. Ueda, T. Komatsubara and T. Hosaka, “A parallel processing
approach for logic module placement,” IEEE Trans. Computer-
Aided Design, vol. CAD-2, pp. 39-47, Jan. 1983.

R. M. Lougheed, D. L. McCubbrey and S. R. Sternberg, “Cyto-
computers: Architectures for parallel Image processing,” in
Proc. IEEE Workshop on Picture Data Description and Manage-
ment, Aug. 1980.

R. M. Lougheed and D. L. McCubbrey, “The cytocomputer: A
practical image processor,” Proc. 7th Annugl International
Symp. on Computer Architecture, pp. 271-277, May 1980.

S. R. Sternberg, “Language and architecture for parallel image
processing,” in Pattern Recognition in Practice, E. S. Gelsema
and L. N. Kanal, Eds., Amsterdam: North Holland, 1980.

P. E. Danielsson and S. Levialdi, “Computer architectures for
pictorial information systems,” Computer, vol. 14, no. 11, pp.
53-67, Nov. 1981.

Languages and Architectures for Image Processing, (M. Duff and
S, Levialdi, Eds.), London, England: Academic, 1981.

{15]

[16]

[26] M. Kidode, “Image processing machines in Japan,” Computer,
vol, 16, no. 1, pp. 68-80, Jan. 1983.
{27] K. Preston, “Ccllular logic computers for pattern recognition,”

Computer, vol. 16, no. 1, pp. 36-47, Jan. 1983,

K. Preston, M. J. B. Duff, S. Levialdi, P. Norgren, and J. Toriwaki,
“Basics of cellular logic with some applications in medical image
processing,” Proc. IEFE, vol. 67, pp. 826-856, May 1979.
Multicomputers and Image Processing: Algorithms and Programs.
K. Preston and L. Uhr, Ids., New York: Academic, 1982.

D. Antonsson et al., “PICAP--A system approach to image pro-
cessing,” IEEE Trans. Computers, vol. C-31, no. 10, pp. 997-
1000, Oct. 1982.

H. I. Siegel, et. al., “PASM: A partitionable SIMD/MIMD system
for image processing and pattern recognition,” IEEE Trans. Com-
puters, vol. C-30, pp. 934-947, Dec. 1981.

M. J. B. Duff, “Review of the CLIP image processing system,” in
Proc. National Computer Conf., pp. 1055-1060, 1978.

§. K. Hiffe, Advanced Computer Design, London, England:
Prentice Hall, ch. 12, 1982,

K. E. Batcher, “Architecture of a massively parallel processor,”
in Proc. 7th Annual Symp. on Computer Architecture, pp. 168-
174, 1980.

M. Aoki et al., “An LSI adaptive array processor,” Proc. ISSCC,
pp. 122-123, Feb. 1982.

K. Preston and P. E. Norgren, “Interactive image processor
speeds pattern recognition,” Electronics, vol. 45, p. 89, 1972.

J. M. Herron, J. Farley, K. Preston and H. Sellner, A general-
purpose high-speed logical transform image processor,” IEEE
Trans. Computer, vol. C-31, no. 8, pp. 795-800, Aug. 1982.

C. M. Baker, “Artwork analysis tools for VLSI circuits,” M.S.
thesis, MIT, Cambridge, MA, 1980.

H. S. Baird, I ast algorithms for LSI artwork analysis,” J. Design
Automation end Fault Tolerant Computing, vol. 2, no. 2, May
1978, pp. 179-209.

P. Losleben and K. Thompson, “Topological analysis for VLSI
circuits,” in Proc. 16th Design Automation Conf., pp. 461-473,
Junc 1979.

[41] R. Fustace and A. Mukhopadhyay, A deterministic finite auto-

[28]

[29]
[30]

{311

[32]
[33]
{34]

{38}
{391

[40]

278

maton approach to design rule checking for VLSL” in Proc.
19th Design Automation Conf., pp. 712-717, June 1982.

C. Mead and L. Conway, Introduction to VISI Systems. Reading,
MA: Addison-Wesley, 1980.

G. Matheron, Random Sets and Integral Geometry. New York:
Wiley, 1975.

1. Serra, Mathematical Morphology and Image Processing. Lon-
don, England: Academic, 1981.

E. H. Frank and R. F. Sproull, “Testing and debugging custom
integrated circuits,” Computing Surveys, vol. 13, no. 4, pp.
425-452, Dec. 1981.

M. Marek-Sadowska and W. Maly, ““A hierarchical layout descrip-
tion for artwork analysis of VLSI IC,” Proc. ICCC-82, pp. 419~
422, Oct. 1982.

J. Wilmore, “The use of bit maps in designing efficient data
bases for integrated circuit layout systems,” J. Digital Systems,
vol. IV, issue 1, pp. 71-95, 1980.

R. F. Lyon, “Simplified Design Rules for VLSI Layouts,”” Lambda,
vol. II, no. 1, pp. 54-59, 1st Quarter, 1981.

T. W. Griswold, “Portable design rules for bulk CMOS,” VLSI
Design, vol. 111, no. 5, pp. 62-67, Sept./Oct. 1982.

P. Losleben, “Computer aided design for VLSL,” in Very Large
Scale Intergration VLSI: Fundamentals and Applications, D. F.
Barbe, Ed., Springer-Verlag, 1980.

J. L. Bentley, D. Haken and R. W. Hon, “Fast geometric algo-
rithms for VLSI tasks,” in Proc. COMPCON-80, pp. 88-92, 1980.
M. H. Arnold and J. K. Ousterhout, “Lyra: A new approach to
geometric layout rule checking,” in Proc. 19th Design Automa-
tion Conf., pp. 530-536, June 1982.

S. E. Bello, J. L. Hoffman, R. I. McMillan and J. A. Ludwig,
“VLSI hierarchical design verification,” Proc. ICCC-82, pp.
530-533, Oct. 1982.

M. A. Breuer, A. D. Friedman and A. Iosupovicz, “A survey of
the state of the art in design automation,” Computer, vol. 14,
no. 10, pp. 58-75, Oct. 1981.

1. Soukup, “Circuit layout,” Proc. IEEE, vol. 69, pp. 1281~
1304, Oct. 1981.

C. Y. Lee, “An Algorithm for Path Connections and Its Appli-
cations,” IRE Trans. Electronic Computers, vol. EC-10, Sept.
1961, pp. 346-358.

F. Rubin, “The Lee path connection algorithm,” IEEE Trans.
Computer, vol. C-23, pp. 907-914, Sept. 1974.

J. H. Hoel, “Some variations of Lee’s algorithm,” IEEE Trans.
Comput., vol. C-25, pp. 19-24, Jan. 1976.

J. Soukup, “Fast maze router,” in Proc. 15th Design Automa-
tion Conf., pp. 100-101, June 1978.

R. A. Rutenbar, Ph.D. dissertation, Univ. Michigan, in preparation.

[42]
[43]
[44]

(45]
[46]
(471

[48]
(49]
[50]

[51]
[52]

(53]
[54]

[55]
[56]

[57]
[58]
[59]
[60]

Rob A. Rutenbar (58°78) received the B.S. degree in electrical and com-
puter engineering from Wayne State University, Detroit, M1, in 1978,and
the M.S. degree in computer, information and control engineering
(CICE) from the University of Michigan, Ann Arbor, in 1979. He is
currently a doctoral candidate at the University of Michigan, where

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-3, NO. 4, OCTOBER 1984

his thesis research concerns computer archi-
tectures for CAD problems.

While studying at the University of Michigan
he has consulted in the areas of LSI CAD soft-
ware and worked on hardware design for parallel
processors. His research interests include VLSI
design automation, CAD hardware, computer
architecture, and artificial intelligence.

Mr. Rutenbar is a member of ACM and Eta
Kappa Nu.

Trevor N. Mudge (S’74-M’77) received the B.Sc.
degree in cybernetics from the University of
Reading, England, in 1969, and the M.S. and
Ph.D. degrees in Computer Science from the
University of Illinois, Urbana, in 1973 and
1977, respectively.

He has been with the Department of Elec-
trical and Computer Engineering at the Uni-
versity of Michigan since 1977 and currently
holds the rank of Associate Professor. His
research interests include computer architec-
ture, operating systems, VLSI circuit design, computer vision and
robotics.

*

Daniel E. Atkins (S’68-M’70) received the B.S.
degree in electrical engineering from Bucknell
University, Lewisburg, PA, in 1965, the M.S.
in electrical engineering and Ph.D. in computer
science from the University of lllinois, Urbana,
in 1967 and 1970, respectively.

He is a Professor of Electrical and Computer
Engineering at The University of Michigan, Ann
Arbor, where he is teaching and conducting re-
search in the areas of computer arithmetic, par-
allel computer architecture, and digital design
methodology. His is codirector of the Computing Research Labora-
tory and a member of the Robotics Laboratory. He is past chairman
of the Technical Committee of Computer Architecture of the IEEE
Computer Society and has been co-organizer of several symposia on
computer arithmetic. He is a member of the ACM and SIGMICRO,
SIGARCH, and SIGCSE. He was Program Committee Chairman for
the 1980 International Symposium on Computer Architecture.

He participated in the design of Iliiac III and has also been a member
of the faculty at Bucknell University and The University of Mary-
land. Through university projects and consulting, he has participated
in the design and implementation of eight different high speed parallel
Processors.

