The Louisiana  Computer Exposition on Distributed Systems Based
on Mini and Micro Computers, University of Southwestern  Louisiana.
March, 1979. pp. 143-166.

A DISTRIBUTED OPERATING SYSTEM MACHINE

TREVOR MUDGE
University of Michigan

ABSTRACT

A design methodology suitable for the design of
operating system machines is presented, which yields highly
parallel systems without the designer having to worry about
the details of coordination and synchronization. It is based
on a basic building block called the processing element, and
an interconnection discipline for developing networks of
processing elements. The processing elements and the
interconnection discipline are defined, and some
illustrations of how to wuse them to construct a target
system are included. Finally, deadlock and determinacy of
such target systems is discussed.

~143-



trev
Typewritten Text
The Louisiana Computer Exposition on Distributed Systems Based 
on Mini and Micro Computers, University of Southwestern Louisiana. 
March, 1979. pp. 143-166.


A DISTRIBUTED OPERATING SYSTEM MACHINE*

1. INTRODUCTION

One of the major aims of designers of computing machinery is to
develop techniques for building computer systems that combine greater
throughput with lower cost. The increase in speed and complexity
together with the decrease in cost of computer hardware components,
typified by the present state-of-the-art microprocessor, suggests that
this aim should be easily met. Unfortunately, due to the pitfalls
associated with the existing, largely ad hoc, design procedures for
organizing these components, this is not so.

An obvious way to improve a computer system's throughput is to
design the hardware so that many of the basic computations are
performed in parallel. wWhen a computation is segmented so that
parallel execution can be carried out, intermediate results must be
passed between segments and the final result must be assembled before
finishing the computation. This requires that the hardware, in
addition to performing the actual computations, must coordinate and
synchronize the transfer of intermediate and final results. In some
classes of problems (e.g. the solution of partial differential
equations by relaxation methods) this coordination and synchronization
is highly structured, making is possible to construct go-called
"applications directed" computers for their solution. (The Illiac IV
computer is a good example of this c¢lass of computers, see [Ba]l.)
However, in the general case the coordination problem becomes

increasingly complex, and a situation of diminishing returns is

* This work was supported in part by the National Science Foundation
under Grant NSF-ENG-78-5779.




reached = -- linear increases in throughput resulting from parallelism
require higher order increases in the amount of hardware to provide
coordination., This diseconomy is also reflected in the cost of systems
as well as in the difficulty of the design problem associated with
such systems, As a consequence of this, current design practice is to
forego much potential parallelism in favor of manageable coordination,

This paper outlines a methodology for the design of computer
systems, by realizing them as a distributed network of dedicated legic
building blocks which interpret the target computer's operating
system. In general, wusing the design methodology results in systems
which have a high degree of parallelism and which make wide wuse of
cheap readily available LSI components such as single chip
microcomputers and bit-slice processors. Furthermore, by basing the
design methodology on a data flow [DM] approach to coordination and
synchronization the above diseconomies are reduced, making more
complex systems feasible,

The dataflow approach to controlling systems can be summarized as
follows: In conventional computer systems a basic computation, such as
the execution of an instruction, is carried out upon the receipt of a
control signal from a centralized controller (consider the design of a
microprogrammed computer). To make sure that the instruction executes
with the correct data requires the controller to have knowledge of the
data flow. 1In the case of parallel processing the number of
possibilities for data flow patterns becomes very large, thus making
the controller correspondingly complex. By allowing the data to drive
instruction execution, and hencelin a sense create its own control
signals dynamically, this complexity, which eventually becomes

overwhelming in large conventional systems, is much reduced in similar

-145~



data driven ones. (For a discussion of the relationship of data flow
concepts to operating systems see [De].)

For our purposes the tasks of an operating system can be split
into two classes. One class allocates hardware resources such as
processors, I/0 devices, and memory. The other class allocates
software resources such as files, processes, and message channels
between processes. The design methodology is aimed at those tasks in
the first class. However, we believe that using it to design a target
system will simplify the subseqguent design of those subsystems that
handle tasks from the second class. The operation of an operating
system results in a collection of basic computations having a high
degree of parallelism, but whose interaction does not conform to a
simple regular structure. This suggests that a regular interconnection
pattern of simple modules is not appropriate. However, modularity can
be retained, as can a well defined interconnection discipline,
provided it does not rely on a regular interconnection pattern.

The design methodology uses as a building block a processing
element (PE)}. This is a piece of programmed logic that contains some
form of function unit{s) and can perform a fixed program of register-
to-register type operations, with look~ahead. The look-ahead allows
the operation of the PE to take advantage of any parallelism implicit
in its program. An interconnection discipline between PEs is
established that enables the designer to specify the target operating
system by writing a modular program, that defines the fixed program in
each PE. This can be developed as a top-down procedural
characterization of the register-to-register operatibns within each PE
-- the designer need not be concerned with explicitly specifying

parallelism. Each procedure and subroutine in the program corresponds

~146-




to a programmed PE. The look-ahead scheme uses a tagging technique
which allows registers and fqution units within a PE to be reserved
until their intended contents and operands are available. In this way
potential parallelism among the register-to-register operations issued
by the fixed program is scheduled dynamically. The function units
perform their operations only upon the receipt of all of their
operands, thus the dynamic scheduling is effected by the availability
of data -- hence the target system is data driven. The hierarchical
organization arises as a result of allowing the function units within
PEs to be realized by other (possibly shared) PEs, or special purpose
hardware such as, memories, tape units, disk controllers, etc. The
look-ahead scheme does not distinguish between these, but treats them
all as virtual function units. Because such a wide range of subsystems
are regarded as function units, and because their individual execution
times may be highly data dependent (consider a sequential memory for
example), the dynamic scheduling of each function unit operation,
resulting from the look-ahead scheme in each PE, is an efficient
solution teo the exploitation of potential parallelism in the target
operating system. As in the intra-~PE case, the flow of control in the
inter-PE case is accomplished by the movement of data. This time it is
between modules in the hierarchy.

The advent of cheap widely available LSI components has spurred
research into the problem of effectively combining large numbers of
these components together to construct powerful computing systems.
This research falls into three categories,

The first of these categories is characterized by attempts to
design tightly coupled systems using microprocessors. A good example

is given in [N], where an SIMD (single instruction stream, multiple

~147-



data stream) machine is proposed. It calls for a main memory, eight
control units, a distribution switch, and a set of 1024 identical
processing elements each with their own local memory. (Actually, the
eight contrel units will allow up to eight SIMD programs.) The
motivation for such designs 1is, of course, economic -- & system
approaching Illiac IV's capabilities at a fraction of the cost. It is
interesting to note, that in this particular example it has been
suggested that the processing elements, which are microprogrammed,
should have writeable control stores. Then each could be tailored to
fit the process being handled by its control unit.

The second of these categories is characterized by attempts to
design loosely coupled systems of microprocessors by specifying an
operating system that can run on distributed hardware. A typical
example from this category is the ROSCOE operating system [SF]. It is
organized around an explicit message gscheme to give inter-process
communication, and is being implemented on five DEC LSI-lls.
Presently, many software design problems need to be overcome.

The last of these categories is characterized by the development
of interconnection rules for sets of microprocessors, so that any
desired target system can be designed. This is the approach taken in
this paper, and in [Mu). Other work typical of this approach is the
work reported in [Bi]. The design methodology of [Bi] proposes that
the hardware of a computer be viewed as a set of cooperating
sequential processes. The sequential processes, which are just sets of
totally ordered {(with respect to time) processes, are to be realized
in a modular fashion by using microprocessors. The way in which they
cooperate (i.e. the coordination and synchronization among them) is

defined explicitly 1in terms of Petri nets [P], which are implemented

~148-

Fiio
4

fried

S S TR N e

PR it

o




using additional random logic.

The problem posed by the wunder-utilization of ever increasing
hardware capability is sufficiently large that it is not clear which
of these categories of research will be the most fruitful., Because of
the diverse nature of computer applications it is likely that each of

the three will have an appropriate context.

2. THE DESIGN METHODOLGGY

In this section an outline of the design methodology is
presented. This outline includes: the definition of a PE, and the

interconnection discipline.

2.1 The Definition of a PE

A PE is shown in Figure 1. The main components are:

1. A control memory - CHM.

2. A program counter for the CM - PC.

3. A set of general purpose registers - GPR = {Rl,...,RM}
4, A set of function units - FU = {Fl,...,FN}

5. Interconnection logic - ICL.

6. A tag manager - TM.

The operation of the PE can be thought of as a sequence of
register-transfers under the control of a fixed program contained in
the CM. These register-transfers are of the form:

R_a—F R

I J(RJ"'.l' RI'RJ'."'RJ e GPRU{PC}

3

~-149-



CONTROL
MEMORY

F
[ 2 | INTER

CONNECT

LOGIC

| L : )
E o i é ﬁ
b2 k [}

*
*
*

TAG
MANAGER

Figure 1. The Processing Element (PE).

Ry is the range register and {RJ,...,RJJ are the domain
i

registers. FJ is the function performed by function unit FJ:

assume that each F; can range over a set of functions and that this

set may not be the same for each Fye A subset of the register-

transfers modify the ©PC, so that conditional branching can be

we shall

performed within the fixed program in CM. Each register-transfer has a

-150-

S %



unique index, so that the program in CM is just a sequence of these
indices.

The function units have input and output buffer registers. Their
use can be illustrated if we decompose the above register-transfer. If
Xy through Xg are the input buffers to FJ, and y is the output buffer,
then the register transfer becomes:

RI‘—Y (y = FJ(XI""’XK))

These basic steps in the performance of a register-transfer could
be reflected in the PE by organizing its instruction format in a more
horizontal fashion than that proposed above. 1Instead of just
containing the index of a register-transfer, each instruction could be
broken up into fields. The bit pattern in each field would then
represent one of the basic steps in the performance of the register-
transfer. These steps are also register-~transfers, but of a simple
data movement type -- no data transformations occur during them.

The date movements are handled by the ICL. This may be a system
of one or more busses. In general, some form of arbiter must be
incorporated into the ICL to aveoid collisions during data movements.
The standard microprogramming technique of performing the data

movements, that make up the register-transfer, in a sequential order

-151-



rather than attempting to initiate them all at once, makes the job of
the ICL easier. (In microprogramming this is achieved by interpreting
the fields of a horizontally organized microinstruction sequentially.)

So far we have presented the PE as a programmable machine that
performs register-to-register operations one after another. It differs
from a stored program computer only in that pregram and data are
separated: program resides in the CM and data in the general purpose
registers. In order to speed up the execution of the fixed program in
the CM, advantage can be taken‘of the inherent parallelism present in
the program. This is done automatically with the aid of the TM by a
look-ahead scheme which we shall describe next.

The term look-ahead refers to the fact that an instruction can be
executed out of sequence and possibly in parallel with other
instructions provided the following two conditions are true, First,
that there are enough function units having the required capability
available. Second, that the sequence of values taken on by the general
purpose registers remains unchanged. However, as we shall see next, a
value may be represented by a tag that indicates where that value may
be found.

Each function unit has a unique index associated with it called a
tag. This tag can be used to reserve registers that are to receive a
result from the function unit. The proposed look-ahead scheme examines
an instruction, and if there is an available function unit capable of
executing it, the contents of ﬁhe domain registers it sgspecifies are
sent to the input buffer registers of that function unit using the
ICL. The range register specified by the instruction is loaded with
the tag associated with that function unit. The function unit is then

set to go and the next instruction is examined. We term the above

-152-

4
i
%
4
4




procedure issuing (an instruction).

The instruction examined is determined by the contents of the PC.
Normally the PC is just incremented after each instruction is issued.
In the case of branching where the PC is modified by a function unit,
the PC is loaded with the associated tag of that unit until the new
value of the PC is computed. During such periods instruction issuing
halts, 1i.e., we shall not, in this paper, consider the possibility of
look-ahead past a branch in the PE's program, -although additional
look-ahead could be achieved 1if it were known which outcome of a
branch occurred most often. It also halts when an instruction is
encountered that calls for a function which cannot be performed by any
of the available function units. It resumes as soon as a unit becomes
available.

When a function unit completes its operation it sends the result
directly to those general purpose registers and function unit input
buffer registers that contain its associated tag. The case of a tag
being in the input buffer register of a function unit, and hence of a
result being forwarded directly to the input of another function unit,
arises in the following manner. Recall, that in issuing an instruction
the contents of those general purpose registers specified as domain
registers by the instruction are sent to the input buffer registers of
a function unit. The content of some of the domain registers may be
tags (indicating that those registers are awaiting results from
function units), thus these tags are sent to input buffer registers.
Naturally, when a function unit has a tag instead of data in any of
its input buffer registers, it must wait for the data to appear before
it can complete its operation,

The above look-zhead scheme is essentially that described in [T]



and used in the floating point unit of the 360 model 91. The scheme is
described with more precision in [K] where the guestion of optimal
parallelism is discussed. In this last reference it is shown that the
sequence of values taken on by the general purpose registers remains
unchanged (if it is allowed that each tag can stand for the value of
the next output of the function unit that it is associated with} as a
result of wusing the proposed lock-ahead scheme. Reference [K] also
points out that when a function unit generates ™ a result it must
perform an associative search involving the contents of each general
purpose register and input buffer register to determine where to send
the result. This results in an unduly complex ICL. An approach which
reduces this complexity is embodied in the TM. Its operation will be
described next.

The TM contains a two-dimensional matrix of bit values. The rows
correspond to the tags and the columns correspond to the general
purpose registerg and the function unit input buffer registers. If
there is a tag for function unit x in register y, then there is a one
bit in the matrix at the intersection of the row assigned to tag x and
the column assigned to register y. This keeps track of the tags, so
that when a function unit generates a result it knows where to send it
by checking the columns having one bits in the row corresponding to
the function unit's tag. This avoids the associative search. It also
facilitates one other tricky point associated with tag movements that
arises when &a tag in a general purpose register is overwritten with
another tag. In such a case, the bit corresponding to the first tag is
set to zero by clearing the matrix column correspondiﬁg to the general
purpose register, then the bit corresponding to the second tag, that

overwrites the first tag, is set to one in the matrix. Since the rows

~154-




(L Lo e
Al

SRt

and columns of the matrix are indexed, all these operations can be
performed efficiently. The matrix 1is updated whenever a new
instruction is -issued, as, in general, this results in moving tags to
input buffer registers and the overwriting of tags in general purpose
registers. It is also uﬁdated whenever a function unit generates a
result: after the bits in the row corresponding to function unit's tag
have been wused to determine where to send the result the row is
cleared.

Figure 2 illustrates the look-ahead scheme in a PE having three
function wunits F, G and H, and 6 general purpose registers. The bit
matrix in the TM is shown also, and the presence of a one bit in it is
shown by a cross. Four snap-shots of the PE are shown as the three
instructions at the top of the fiqure are issued. Notice how in the
third snap-shot the tag for function unit F (namely tg) has been
overwritten by that for H (namely ty)

The TM matrix in the above scheme becomes unwieldy for PEs with
large numbers of general purpose registers and function units. 1In
these cases an alternative scheme may be used. Its operation will be
described next.

Each function unit maintains a linked list of names of registers
where 1its result is to be sent. This avoids the associative search
again, but runs into trouble when a tag is overwritten because some
function unit will then contain an incorrect destination in its linked
list. 1In such a case the following action can be taken: First, before
the old tag is overwritten use it to address its associated function
unit. Second, 1in this function unit delete from the linked list the
name of the register which contains the tag to be overwritten (this

register has identified itself in the first step). Finally, overwrite

-155~



FUs

FUs

FUs

FUs

Partial contents of 1 « F(2,3)
the CM 4 « G(1,5) Read C(x) as "contents
1 « H(6,4,2) of register x", & t_ as
"tag for function unit x"
abcdefgl23456
o
F
G ™
H GPRs
to 1 .
a b c d e £ g 5 After the first
L (2 k(3 - [ - - —-_ ] - 3 instruction
i i d.
F G - 4 is issue
5
— — —— 6 -
abcde fgl2345E6
F
G ™™
H GPRs
to 1 After the second
a b c d € £ g 2 instruction
= (2)k (3) tr Jo (5) - l'“ - . 3 is issued.
F G H G 14
5
— —— — 6 .
abcdefgl2345¢6
F
G ™
H GERs
_ g 11
a b c 4 e £ g I After the third
- (23k (3) tr Jc (5) - (6)] TG k(2) 3 instruction
tg 4 . . a
F G H is issued.
5
— et — 6 |
abcde fgl2234586
F
G L/ ™
H GPRs
ty |1 .
a b ¢ d e f g 5 After function
c(z)k(3) puylc 5 c(6ﬂtc s (2} 3 unit F completes,
F G H tG 14
5
F(2,3) = - 6 N
Figure 2. An Illustration of the Look-ahead Scheme,

156~

kit Bt

it

s



the tag.

2.2 The Interconnection Discipline

In this subsection we shall discuss how networks of PEs can be
interconnected to form the operating system of a target machine.

Figure 3 shows the interconnection of two PEs. From the point of
view of PEl, PE, looks like a function unit, and vice versa. PE1
invokes the use of PE2 by issuing an instyruction of the form
RI4_.F(RJ). As soon as a, the input buffer register for F, 1is loaded
; with data (not a tag), the data 1is transferred to y, the output
register of function unit G in PE,. To PE, it appears that function
unit G has completed an operation and the data in y is sent to all the
registers containing the tag associated with G. Eventually PE, places
data into x, the input buffer register for G. This can be regarded as

the result returned after PE, has operated on the data that was

initially sent to y. This result is sent to b, the output register for

s

F in PE,. Thus, PE; believes that it has wused a function wunit F,

1-
unaware that F has been decomposed into a series of register-transfers
that are performed by PEZ' Since the processing performed by PE2 may
take a widely varying amount of time (i.e. its execution time may be
very data dependent), the look-ahead scheme becomes important if the
operation of F is not to block the issuance of instructions in those

cases when F takes a long time, Notice it is the wide variation in the

execution of F that makes the efficient use of the hardware difficult.

£ If F took a fixed time, albeit long, other events could be set to run
& concurrently. However, if F is done rapidly on some occasions, but
takes much longer on others, a dynamic method of scheduling events

(such as the look-ahead procedure) is the only efficient solution,

~157-




PEl PE2

Data to begin F. Data returned after
processing.

v
>

V V

F outputs Data to PE2 for
result. processing.

Figure 3. Interconnecting Two PEsS.

It is important to draw attention to the fact that data, not
tags, are transmitted between PEs. Tags never leave the PE in which
they were created. This modularization makes the look-ahead scheme
practical. If tags could traverse PE boundaries a single tag
management system would be needed for the whole system. The complexity

of tag management does not grow linearly with the size of the domain

-158-




in which it manages tags, but at a much faster rate. Therefore, by

structuring the design metho@plogy to yield a modular target system we
minimize the problem of tag management, but retain the advantages of
the look-ahead scheme.

In Figure 3 the interconnection of PEl and PE, does not bias the
control flow in favor of making PE1 the controller and PE2 the
controlled (although we have chosen to view things this way in the
previous discussion), or vice versa. This interconnection discipline
results in a relationship between the two parts that is analogous to
that between two coroutines. By suitably programming PEl and PE2 it is
possible to make PE, control PE, or vice versa. In both cases, a
relationship would exist that is analogous to that between two blocks
in a structured program in which one 1is nested inside the other.
However, 1in general, the analogy is incomplete in that the nested PE
may not reinitialize its registers each time it 1is invoked by the
other PE. Two PEs can control a third, provided they control it
through separate ports. 1In this case the analogy of a shared
subroutine comes to mind. Once again the analogy is incomplete; this
time because parameters are passed through separate registers to the
shared PE. The fact that the register~transfers that occur in a PE are
issued sequentially as instructions from the CM means that it is a
straightforward task to ensure that mutual exclusion occurs between
the attempts of the two sharing PEs to get control of the PE they
share: potential conflict is automatically taken care of by the fact
that the separate requests can be granted by separate instructions in
the shared PE, and since instruction issuing is segential it is easy
to arrange to resolve the reguests.

The illustration in Figure 3 shows a situation which one argument

-159-



is sent to PE, from PE1 and one result is returned. In general many
arguments could be sent and many results returned. This could be
accomplished by time multiplexing the interchange of data or by giving
F multiple input buffer registers and output registers. One case of
special interest is when one PE is required to control another and the
controlled PE does not require an argument and does not return a
result. In such a case the controlled PE can be initiated with the
transfer of a reserved bit pattern from the controller and 1t can
signal its termination by returning a reserved bit pattern. In 1its
simplest form this is equivalent to a request/acknowledge signaling
protocol (in such cases only one bit needs to be sent and received).
However, in more complex situations it may be desirable to interchange
a set of status bits and argument values. Notice now, that what was
initially depicted as a function wunit (F in Figure 3) has been
generalized to a procedure in the programming language sense.

In designing an operating system machine, as a network of PEs, a
variety of types of communication are necessary. Below are listed two
of the more common types with a description of how they would fit into

the unifying framework of the interconnection discipline.

1. Reading and writing into a memory: Figure 4 illustrates how

interconnections 1look for two PEs, PE., and PE

2 3 that read
from different read ports (RPl and RP2) of a memory system
managed by PEl'
2. An interrupt: Figure 5 illustrates how the interconnection

looks for one PE, PEl' that can interrupt another PEz.

~160-



The functional description of the three PEs is shown below,
For further comments see Figure 5.

b «w= RP1 (a) Y «— Read(x)

b{d) a(c) y (V) x ()
read @ x return "word word in request to
in memory @ memory 8 x "read @ x"
x" (x contains
an address)
PEl PE2
a . X
L e
Rl;l——- é{s:mf%
b . Yy ::g
c u
| S e
RP2 “‘-—\ ﬁ"‘i'i.f;‘
r ¥ .
d v [
PE3

G TR T

S

Figure 4. An .Interconnection for a Memory System.

A final observation is that memories, tape units, disk

controllers, etc. can all be regarded as PEs if they are interfaced to

other PEs in the manner of Figure 3,

2.3 Comments on the PEs and Networks of PEs

Systems designed using PEs and the above

interconnection

-161~




PE, interrupts PE, then does a bulk transfer of a fixed

amount of data. A functional description of the PEs is shown
below. Note that, in general, the time for a function to be
performed is unbounded: timing is implicitly linked with the
flow of data.

PE
PE, 2
b =e— F(a) y a— G(x)
b a v X
Fx ‘ rRegaest tx e reguest [fx
“start tx"|we "interrupt" * interrupt |re- "enable
y — interrupt"
= "enable Fegquest gy
interrupt{ e *bulk tx™ bulk:&i Ei%:iitt:?
L

o]
b

V V

Figure 5. An Interconnection for an Interrupt.

discipline will evolve in a top down fashion to produce a

rierarchically organized system. The design of each PE will be

tailored to Fit its specific subtask and this will be defined by its

fixed program. The overall sysﬁém can be designed by writing a

structured program, whose components stand in close analogy with those

found in the discipline of structured programming (as we noted in the
-162-

E—



previous subsection). Each block and subroutine in the program can be

translated into a PE. Elements of both the control structure and data
structure, in such systems, reside in each PE.

Although the program will be written as a procedural program, the
implicit parallelism present in the program will be realized in the
operation of the hardware, as a result of the lock-ahead procedure 1in
each PE. Furthermore, it can be observed that a register-transfer in
such systems is data driven in the following 'sense: a register-
transfer is enabled by the reception of tags into its domain reqgisters
it is then fired, so to speak, upon the reception of all of the
operands into its domain registers. Thus systems resulting from using
the design methodology may be regarded as data flow systems.

Two major problems associated with the coordination of processes
in computer hardware are deadlock and non-determinacy. At the hardware
level a process is taken to be a register-transfer or collection of
register~transfers. The resources of such processes are their
registers, buses and functional blocks., A set of processes is defined
to be deadlocked [Ha] when no process can proceed without acquiring a
resource already held by another process within that set. Necessary
conditions Ifor deadlock are: resources must not be sharable or
preemptable, resources must be retained while a process is acquiring
further resources, and there must be a circularity in the resource
requirements of the processes. A set of processes 1is defined to be
non-determinate if the computation performed by those processes is not
uniguely determined by their initial state. Necessary conditions for
determinacy are: the segquence of va}ues taken on by the registers in
the set of processes should depend only on their initial values. The

concept of deadlock and non-determinacy are discussed further in [Mi]

~-163-



and [Dil.

Based on the above conditions we make two conjectures:

1, Systems designed using the preliminary ideas presented above
are deadlock-free, if the control graph of the system is

circuit-free.
2. These systems are also determinate.

We define the control graph of a system to be a directed graph
that indicates the control relationship between the set of
interconnected PEs that make up the system. Each PE is represented as
a node 1in the graph. Given two PEs A and B, if A controls B, then an
arc is drawn from the node for A to that for B, If A and B have co-
control of one another (the coroutine analogy), then the nodes for A
and B are joined by an edge with arrowheads at each end. A circuit in
the control graph implies a circularity in the resource requirements
of the processes. This satisfies the necessary conditions for deadlock
(whether a circuit-free control graph implies no circularity in the
resource requirements remains to be proved}.

The determinacy of each PE follows from the discussgion in [k},
whether this remains true for sets of PEs, interconnected according to
the above discipline, will require proof based on a type of
structuring theorem.

It should be noted that guaranteeing that processes at the
hardware levél are free of deadlock and non-determinacy does not
preclude a programmer, who. writes programs for the system, from

writing programs that define higher level processes that deadlock and

~164-




are non-determinate.

Finally, for implementing PEs using LSI components there are two
choices; either a conventional microprocessor architecture may be
chosen, such as the Intel 8080, or a bit slice architecture may be
chosen, such as the AMD 2900 series. The first choice will almost
certainly make it necessary to give up intra PE look-ahead. Also, pin
limitations will make target systems bus limiteé, and be the over-
riding factor in limiting the speed of the system, The second choice
would be a better one. A bit slice architecture is not bus limited,
would allow intra-PE look-ahead to be easily implemented, and be
expandable to fit whatever word size the target system reqguired. In
the case of the AMD 2900 series in particular, bipolar speeds would be
available. This would allow data transfers between PEs in the order of

100ns.

3. CONCLUSION

A design methodology suitable for the design of operating system
machines has been presented, which yields highly parallel systems
without the designer having to worry about the details of coordination
and synchronization. Since the appearance of [Mu], a similar
application of the look-ahead algorithm of [T] has been suggested to
speed-up instruction execution in multifunction processors (see [Hil),
by placing the look-ahead at the microprogram level. This can be
regarded as a firmware implementation of the type of control found in

the floating point unit of the 360 model 91.

4. REFERENCES

[Ba] Barnes, G., et al., "The ILLIAC IV Computer," IEEE TC, C-
17, No. 8, pp. 746-757, RAug. 68. T

-165-



[Bi]

[e]

[DM]

[D1]

[Ha]

[Hi]

[K]

[Mi]

[Mu]

(N]

[P]

[SF]

Bisiani, R., and F. Tisato, "A Multi-microprocessor System
as a Set of Cooperating Processes," Proc. Euromicro

Workshop, eds. R. Hartenstein and R. Zaks, Jun. 75.

benning, P.J., "Operating Systems Princlples for Data Flow
Networks", Computer Magazine, pp. 86-96, Jul. 78,

Dennis, J.B., and D. P. Misunas, A Preliminary
Architecture for a Basic Data-Flow Processor, Comp.
Structures Group Memo 102, Proj. MAC, MIT, Aug. 74.

Dijkstra, E.W., "Co-operating Sequential
Processes,"Programming Languages, F. Genuys Ed., Academic
Press, New York, 68,

Habermann, A.N., "Synchronization of Communication
Processes," CACM, Vol. 15, No. 3, pp. 171-176, Mar. 72.

Higbie, L.C., "Overlapped Operations with
Microprogramming", IEEE TC, C-27, No. 3, pp. 270-275, Mar.
78.

Keller, R.M., "Look-Bhead Processors," Computing Surveys,
vol. 7, No. 4, pp. 177-195, Dec. 75.

Miller, R.E., "A Comparison of Some Theoretical Models of
Parallel Computation," IEEE TC, C-22, No. 8, pp. 710-717,
Aug. 73.

Mudge, T. ,"Research Initiation into a Design Methodology
for High Performance Digital Computers", Proposal for
research supported by the National Science Foundation
under Grant NSF-ENG-78-5779, Dec. 77.

Nutt, G.J., "Microprocessor Implementation of a Parallel

Processor," Proc. 4th Annual Symp. on Computer
Architecture, Mar., 77.

Petri, C.A., Communication with Automata, Suppl. 1 to
Tech. Rept. RADC-TR-65-377, Vol. 1, Rome Air Development
Center, New York, 66.

Solomon, M.H., and R. A. Finkel, "A Multi-microcomputer
Operating System", Proc. 2nd Rocky Mountain Symp. on
Microcomputers, pp. 291-310, Aug. 78.

Tomasulo, R.M., "An Efficient Algorithm for Exploiting
Multiple Arithmetic Units,"™ IBM Jour. R&D, Vol. 11, No. 1,
pp. 25-33, Jan. 67

-166-

P





